Phases of the Moon

Phases of the Moon

- Moon *revolves* around Earth & *always half lit* by Sun
- Earth *rotates* on its axis
- these motions *determine phase & when/where* we see *Moon* in the sky

• *boundary* between lit/dark regions: *terminator*

Rise & Set Times 6 AM **9 AM 3 PM** 6 PM 9 PM Midnight 3 AM Noon 9 PM Midnight 3 AM **3 PM** 6 PM 6 AM 9 AM Noon • New Moon *rises* at 6 AM & sets at 6 PM • each *phase adds* ~ 3 *hours* to rise & set time • Moon is *often* visible *during daylight hours*

CLICKER: You look up in the sky at sunset and see the moon at its highest point in the sky. What phase must the Moon be in?

- (a) New Moon
- (b) Full Moon
- (c) Third Quarter
- (d) First Quarter

****** the picture is only decorative - don't go by the phase shown! **

****** the picture is only decorative – don't go by the phase shown! **

Moon's Orbital Periods

• *sidereal period* (27.3 days): time for <u>one complete orbit</u> *around Earth* (eg. 360°, return to same location on sky wrt stars)

• *synodic period* (29.5 days): time to *go through* <u>one complete cycle of phases (eg. New-to-New)</u>

Q: Why aren't the two periods the *same*? (demo)

• periods are different because the Earth moves (around the Sun) while the Moon orbits the Earth

Lunar Eclipses

- occur when *Moon* passes through *Earth's shadow*
- only occur during **Full Moon** why?
- need *Earth* to be *between Moon & Sun*

- *a shadow* has *two parts*:
- *umbra* (*central shadow*; *direct light fully blocked*)
- penumbra (outer shadow; light partially blocked)

TABLE 3-1 L	unar Eclipses, 201	8-2021
Date	Туре	Where visible
2018 Jan 31	Total	Asia, Australia, Pacific, western North America
2018 July 27	Total	South America, Europe, Africa, Asia, Australia
2019 Jan 21	Total	Central Pacific, Americas, Europe, Africa
2019 July 16	Partial	South America, Europe, Africa, Asia, Australia
2020 Jan 10	Penumbral	Europe, Africa, Asia, Australia
2020 June 5	Penumbral	Europe, Africa, Asia, Australia
2020 July 5	Penumbral	Americas, Southwest Europe, Africa
2020 Nov 30	Penumbral	Asia, Australia, Pacific, Americas
2021 May 26	Total	Asia, Australia, Pacific, Americas
2021 Nov 19	Penumbral	Americas, Europe, Asia, Australia, Pacific
Eclipse predictions by	Fred Espenak, NASA/Goddan	d Space Flight Center.

Solar Eclipses

- occur when *Moon's shadow* hits *Earth*
- occur *only* during *New Moon why*?
- need Moon between Earth & Sun

- *partial*: Moon *partially* blocks Sun
- total: Moon totally blocks Sun
- *annular*: Sun remains visible *around* Moon

- both *Moon* & *Sun* appear to be $\sim \frac{1}{2}^{\circ}$
- *Earth's & Moon's* orbits are *elliptical*, so *apparent size* of *Sun & Moon relative* to each other *varies*
- *thin ring* ("*annulus*") *of light* around *Moon*

- Moon's umbra must reach Earth for total eclipse
- ... at best it *just barely* does so!

totality never lasts longer than ~8 minutes *Q*: Why so *short* compared to *total lunar eclipses*?

Total Solar Eclipses

