

Basic information (U, N, P)			
Density (avg, g/cm ³):	1.3	1.6	1.8
Distance from Sun (avg, AU):	19	30	40
Orbital Period (years):	84	165	249
Rotation Period (equatorial):	~17h	~16h	~6 days
Albedo:	0.30	0.29	0.72
Moons (2018):	27	14	5
Tilt of rotational axis:	98°	30°	118°
Equatorial diameter (x Earth):	~4	~4	~0.20

Exploring the Outer Planets

- *none* are *easily* visible without a telescope
- Uranus found accidentally by Herschel (1781)
- *Neptune predicted* by *LeVerrier* (1846)
- Pluto photographed by Clyde Tombaugh (1930)
- Voyager 2 flybys NASA Uranus (1986), Neptune (1989)
- New Horizons flyby of Pluto (2015) NASA

Interior Structure

• almost named "Georgium Sidus" (George's Star)

South pole

- renamed for *Saturn's* father
- only planet with Greek name

• only moves ~ 4° per year

Neptune ("God of Sea")

• co-discovered? (*LeVerrier/Adams*) via *predictions* made due to *observed deviations* in *Uranus' orbit*

• same size as *Uranus*, but 20% more massive

• *emits* **more** *energy* than it *receives*

- temperature: 55 *K* (-218° *C*)
- same as Uranus Q: Why is this unusual?
- more mass but same size

• gravitational contraction releases energy (like Jupiter) Q: What effect will this have?

- \Rightarrow dynamic atmosphere with visible *belts* & *zones*
- winds of *1300*+ *kph*

