

Center of Mass

- center of mass (barycenter): "point of balance"
- stars orbit about center of mass of the system

Stellar Groupings

- single stars: one star forms out of solar nebula (eg) Sun

- binary stars: two stars form out of solar nebula
- both stars orbit about common center of mass (eg) Albireo

- optical binaries only appear to be binaries
(eg) Mizar \& Alcor in Big Dipper

- visual binaries can be seen visually (surprise!!) (eg) Mizar A \& Mizar B
- eclipsing binaries orbit so that one star blocks the other's light, affecting overall brightness

- spectroscopic binaries can only be split using doppler shifts in each stars' spectra

Clusters of Stars

- open cluster: loosely bound stars
- stars ~ same age
(eg) Pleiades, 100 My, 365 ly away
- over 1000 stars

- globular cluster: stars tightly bound
- very old ("metal" poor)
- orbit center of galaxy
(eg) M2 (Aquarius)
- 13 Gy, 50,000 ly away
- 150,000 stars, 175 ly across

Stellar Magnitudes

- originated by Hipparchus, ~200 BCE
- based on naked eye brightness
- brightest stars were " magnitude l", then 2, 6
- refined so 5 magnitudes $=100 \mathrm{x}$ brightness
- thus each magnitude step is $\sim 2.5 \mathrm{x}$ brightness
(eg) a mag 1 star is 100 x brighter than a mag 6 star
(eg) a mag 3 star is 2.5 x dimmer than a mag 2 star

Q: Why might a star appear bright to us on Earth?

- apparent magnitude (m):
how bright a star looks from Earth
- absolute magnitude (M):
how bright a star would look if it were located 10 parsecs from the Earth
(eg) Sun: $\mathrm{m}=-26.7 ; \mathrm{M}=+4.8$
CLICKER: A star has $m=+6.7 ; M=+1.2$. Is it (a) closer or (b) further than 10 parsecs away?
- since star appears dimmer from Earth (+6.7) than it would if at 10 parsecs $(+1.2)$ it must be further

Blackbody Radiation

- "blackbody": absorb \& emit at all wavelengths
- planets \& stars are approximately blackbodies
- as a "blackbody", stars emit at every wavelength, but not at equal intensities
- star's spectrum has a peak
at some specific wavelength

- shape of spectrum \& position of peak depend only on surface temperature of the blackbody

- peak is where star emits most intensely
- as temperature changes, location of peak \& intensity of spectrum changes

CLICKER: What colour would a star with a surface temperature of 3000 K appear to be?
(a)blue (b) yellow
(c) green (d) red

Wien's Law

Infrared Emission

- peak wavelength of blackbody emission is dependent on temperature of object

$$
\lambda_{\max }=\frac{.0029}{T}
$$

- $\lambda_{\text {max }}$ has units of $\boldsymbol{m e t e r s}, \boldsymbol{m}$
- T has units of Kelvin, \boldsymbol{K}
- holds for any object which is ~ a blackbody
(eg) What is $\lambda_{\text {max }}$ for a temperature of 3 million K ?
- from Wien's Law:
$\lambda_{\text {max }}=\frac{.0029}{3 \times 10^{6} \mathrm{~K}}=1 \times 10^{-9} \mathrm{~m}=1 \mathrm{~nm}$

Q: We observe X-rays emitted from Sun's corona. What does this imply about the corona?

Stefan-Boltzmann Law

- energy flux measures how fast energy is emitted from $1 \mathbf{m}^{2}$ surface of a blackbody
- energy flux (\boldsymbol{F}): energy per second per m^{2}
- depends only on surface temperature to $4^{\text {th }}$ power

$$
\mathrm{F}=\sigma \mathrm{T}^{4}
$$

- F has units of watts per square meter, W/m²
- T has units of Kelvin, \boldsymbol{K}
- σ is constant with value of $5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$

Luminosity

- luminosity is total energy emitted per second:

$$
\mathrm{L}=\mathrm{F} \times \text { area }
$$

- L has units of $\boldsymbol{w a t t s ,} \boldsymbol{W}$
- absolute magnitude is related to luminosity

Q: Do two stars with same \boldsymbol{F} but different sizes emit the same total energy? Can objects with different F 's emit the same total energy?
CLICKER: L if Sun had same size but twice as hot... ? (a) unchanged (b) $2 x$ (c) $4 x$ (d) $8 x$ (e) $16 x$

Spectra of Stars

- spectral classes are (hot to cold):

O B A $\mathbb{F}^{\prime} \mathbb{K} \mathbf{M}$

- mnemonic: Oh, Be A Fine (Girl/Guy), Kiss Me

Q: Why are they not in alphabetical order?

- each subdivided into range 0-9 ("hot to cold")
(eg) A8 hotter than A9; A9 hotter than F0
- Sun is classified as G2; Sirius A is A1

CLICKER: Why do the hottest spectral types (O and B stars) show so few absorption lines?
(a) these stars have used up most of their elements
(b) these stars are old \& formed before heavy elements were available
(c) $O \& B$ stars only produce continuous spectra
(d) most atoms in these stars are ionized and do not readily absorb photons

Luminosity Classes

- a G star could be in one of several stages
- extended classification based on details of spectra

- white dwarves denoted by " $w d$ "
(eg) Sun is a G2V star; Betelgeuse is a M1I star

CLIČKER: In a random sample stars, you would expect most to belong to which group?
(a) main sequence
(b) giants
(c) super giants
(d) white dwarfs

CLICKER: The most common type of star is a...
(a) red dwarf star
(b) yellow (Sun-like) star
(c) blue-white high mass star
(d) blue super-massive star

Lifetimes of Stars

- larger stars have shorter lifetimes Q: Why?
- hotter cores so "burn" H faster

- lifetimes of single stars can be determined theoretically by location on the $H-R$ diagram

Distance Determination

- each method requires different info \& applies over different distance ranges
- stellar parallax
- spectroscopic parallax
- main sequence fitting
- Cepheid variables
- white dwarf supernovae

Stellar Parallax

- nearby stars appear to shift location on sky when viewed from different locations

- size of apparent shift indicates distance
- ancient Greeks could not detect parallax
- human eye can only resolve angles > 1 arcmin

$$
d=\frac{1}{p}
$$

- p: parallax angle measured in arcseconds
- d: distance in parsecs
- Hipparcos (1989), an ESA satellite, measured p for $100,000+$ stars to ± 0.001 arcseconds
(eg) Proxima Centauri has the largest known parallax angle, 0.772 ", so 1.3 pc (4.2 ly) away
- parallax makes no assumptions BUT only useful to distances of a few hundred parsecs (Why?)

Spectroscopic Parallax

- inverse square law (ISL): light spreads out \& is less concentrated (dimmer) at greater distance

DEMO: flashlight

- find distance with ISL by comparing apparent brightness (observed) \& luminosity (spectra/HR)

Main Sequence Fitting

- plot apparent magnitude of main sequence stars in a cluster \& compare to brightness of a cluster of known distance (eg) Hyades in Taurus @ 150 ly
- reduced uncertainty compared to spectroscopic parallax from single stars
- $\boldsymbol{d} \propto \sqrt{ }$ ratio of brightness
(eg) Pleiades are 7.5 times dimmer, so $\sim 2.8 \mathrm{x}$ further

- named for first such star found, a Cephei
- not main-sequence
- contraction/expansion
of star's envelope

- relationship between pulsation period \& L
- bright enough to be visible up to 10^{8} ly

White Dwarf Supernovae

- aka Type Ia SN
- adding mass to a white dwarf causes it to detonate
- up to $10^{10} L_{\text {sun }}$
- bright enough to
be seen @ 10^{10} ly
Center of the galaxy NGC 4526

(eg) Type Ia supernovae on the outskirts of a galaxy

