Stellar Evolution: Low & Intermediate Mass Stars

Stellar Evolution

- even hot, fast burning stars live millions of years
- they *seem* unchanging, but stars *evolve through specific stages in their lifetimes*

Q: During a human lifetime we observe only one billionth of the lifetime of many stars... so how do we decipher the life story of the stars?

Dark Molecular Clouds

- "warm" atomic H (HI) throughout the galactic disk
- cold, dark molecular clouds of H_2 in the disk

GON: Emission nebula

Nebulae

• Trifid (M20): dark regions lie within HII region

Protostars

- before sustained nuclear reactions occur in core
- within cold gas clouds, contraction converts gravitational potential energy into thermal energy
- *protostar* is **too opaque** to radiate thermal energy away quickly, so *interior heats up*
- thousands of years: surface temp thousands of K

Protostar to MS times

A Star is Born

- core temperature & density increase with time
- fusion begins when core reaches 10 million K
- for *Sun-like star*, may take *100+ million years*
- a *main-sequence, H* burning star is born!
- some protostars do not have enough mass
- core *cannot* reach 10 million K
- dense balls of gas (not stars) called brown dwarfs

(eg) Jupiter, Gliese 229 companion (19 ly, Lepus)

• fewer particles, lower pressure,

- envelope expands why?
- eventually core runs out of H
- *fusion rate* (& thus *lifetime*) depends on *mass*

table 21-1 Mass (M _c)	Approximate Main-Sequence Lifetimes			
	Surface temperature (K)	Spectral class	Luminosity (L_)	Main-sequence lifetime (10 ⁶ years)
25	35,000	0	80,000	4
15	30,000	В	10,000	15
3	11,000	A	60	800
1.5	7000	F	5	4500
1.0	6000	G	1	12,000
0.75	5000	К	0.5	25,000
0.50	4000	М	0.03	700,000

- Sun has ~ 5 billion main-sequence years left
- Q: What happens when all H in core gets used up?
- *fusion stops*; *outward* fusion pressure *ceases*
- end of main sequence lifetime
- gravity collapses core

Q: What happens to envelope & L of star?
envelope expands hugely; enhanced solar wind
Red Giant phase
very low mass stars do not evolve further
in others, core temperature reaches 100 million K
fuse He ⇒ carbon (C) & oxygen (O) (triple-α)
Q: Why is temperature so high for He fusion?
hydrostatic equilibrium restored
envelope cools somewhat & contracts

Low Mass Stellar Interior

CLICKER: Why are Red Giants "red"?

- (a) *decreased* energy flux at the star's surface
- (b) scattering of blue light by enhanced envelope
- (c) *increased* surface temperature
- (d) *contraction* & *cooling* of the star's envelope

Q: What happens when all **He** in core is used up?

• *low-mass stars never reach core* temp needed to fuse *C*, *O* (600 million *K*)

- collapse *heats core*, causes *He shell burning*
- series of *thermal pulses* drive *envelope expansion*
- dredge up C from core: "star stuff"
- envelope swells into a Red Giant again
- core undergoes final collapse

Low/Int Mass Evolution

Death of Low & Intermediate Mass Stars

- *no fusion*: *core* collapses to *size of Earth*
- high *density*; 1 tsp ~ mass of an elephant
- **Q:** What stops the core collapse?
- electron degeneracy pressure
- results from *Pauli Exclusion Principle*
- electrons cannot be close & share properties
- *hot core* called a *white dwarf*
- eventually *cools*, *crystallizes*: *black dwarf*

added mass could exceed Chandrasekhar Limit
Type Ia Supernovae (~10¹⁰ L_☉)

Butterfly Nebula (Ophiuchus)

Butterfly Nebula (Scorpius)

