Astronomy 111

- Instructor: Greg Arkos
- Office:B315-209
- Office Hours: T, R 1:00-2:30pm
- Office Phone:753-3245 x 2207
- Email: gregory.arkos@viu.ca
- Website: http://wordpress.viu.ca/arkosg

1

Observing Project

- includes outdoor observations, independent work
- detailed guidelines \& due date on website
- NO lates

Doing well

- come to class \& participate
- don't leave observing project to the last minute
- study, see me when you have Q's

Course Info

- read course outline: http://wordpress.viu.ca/arkosg

Notes, Labs, Quizzes

- (incomplete) notes posted online
- labs start next week (bi-weekly)
- on the website; fill-in format; NO lates
- NO deferred quizzes (best 5 of 6)
- there is NO "make-up" work, extra work, etc.

4

```
CLICKER: Which faculty do you belong to?
(a)Sci & Tech
(b) Arts & Humanities
(c) Social Sci
(d) other
CLICKER: How did you hear about this course?
(a) VIU calendar
(b) recommended (by advisor, friend, etc.)
(c) course website or poster on campus
(d) other
```

6

7

- Earth is a planet which orbits the Sun

Course Overview

8

10

11

Our Solar System

- consists of the Sun \& all objects orbiting it

Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune

CLICKER: If Earth was the size of a basketball \& the Moon a tennis ball, they would be roughly... ?
(a) 1 foot apart
(b) 5 feet apart
(c) 25 feet apart
(d) 100 feet apart

12

How to remember the order...

MVEMJSUN
"My Very Excellent Mother Just Served Us Nachos"
"More Velocity Ensign Might Just Save Us Now"

15

17

- our Sun is a star similar to those we see at night

16

18

19

- Milky Way is our galaxy - 100+ billion stars

- count all the stars in our galaxy: ~ 3000 years

21

- solar system \& stars we see* are in Milky Way

20

- Milky Way is one of many galaxies
- galaxies exist in groups called clusters

22

23

The Universe

- ...is expanding (it was smaller in the past!)

CLICKER: How old is the universe?
(a) thousands of years
(b) millions of years
(c) billions of years
(d) trillions of years

- ... is ~13.7 billion years old
- originated in the Big Bang ("primordial fireball")
- Sun \& solar system formed much later
- ~ 4.6 billion years ago

Our Cosmic Address Observable Universe

- Earth, the Solar System, the Milky Way, the Local Group, Virgo Supercluster, the Universe

A Sense of Time...

Represent Big Bang to present on $\mathbf{1 2}$ month calendar:

- Big Bang took place Jan 1st
- Milky Way formed in February
- Earth formed around mid-August

CLICKER: When did abundant, complex life appear?
(a) late August
(b) early October
(c) mid December
(d) late December

27

29

What is science?

28

Science

- science is based on the scientific method
(1) predict (hypothesis or model) \Rightarrow a Law or Theory
(2) observe (or experiment)
(3) accept, modify or reject
"In questions of science, the authority of a thousand is not worth the humble reasoning of a single individual."
-- Galileo

32

Scientific Notation

- also called exponential notation
- useful for very large (\& very small) numbers
- written as a number times a power of ten (10)

$$
2.5 \times 10^{4}=25,000
$$

- exponent tells you how many tens to multiply by:

$$
\begin{aligned}
2.5 \times 10^{4} & =2.5 \times(10 \times 10 \times 10 \times 10) \\
& =2.5 \times(10000) \\
& =25,000
\end{aligned}
$$

Pseudo-Science

"Listen to the evidence; it never lies."- Gil Grissom, CSI

- pseudo-science lacks evidence or is untestable and does not adhere to scientific method
(eg) astrology

33

- exponent tells how many places to move decimal:
$1.0 \times 10^{2}=100.0 \Rightarrow$ decimal moves 2 places to right
$3.0 \times 10^{-1}=0.3 \Rightarrow$ decimal moves 1 place to left
(eg) Write the following in scientific notation:
- distance to the Sun: $148,800,000 \mathrm{~km}$
- exponential notation: $1.488 \times 10^{8} \mathrm{~km}$
- size of an atom: 0.0000000001 m
- exponential notation: $1.0 \times 10^{-10} \mathrm{~m}$
- can also use metric prefixes:
giga (G) - one billion mega (M) - one million kilo (k) - one thousand micro (μ) - one millionth nano (n) - one billionth
(eg) a thousand meters is a...?
(eg) a billionth of a second is a...?

36

Light Year (ly)

- distance light travels (in a vacuum) in one year
- it is a distance, not a time!

$$
1 \mathrm{ly}=9.46 \times 10^{12} \mathrm{~km}
$$

(eg) To drive a light year at $100 \mathrm{~km} / \mathrm{h}$ would take:

$$
\text { time }=\frac{\text { length }}{\text { speed }}=\frac{9.46 \times 10^{12} \mathrm{~km}}{100 \mathrm{~km} / \mathrm{h}}=9.46 \times 10^{10} \text { hours }
$$

- this is nearly 11 million years!
(eg) Proxima Centauri (closest star beyond Sun) is $40 \times 10^{12} \mathrm{~km}$ or $265,000 \mathrm{AU}$ or 4.2 ly away

Astronomical Unit (AU)

- distances in astronomy can be very large
- so a large unit is convenient to measure distances!
- astronomical unit $(A U)$ is "the average distance between the centers of the Earth and Sun"

(eg) Jupiter is ~ 5.2 AU from the Sun

37

The Andromeda Galaxy (M31)

- 2.5 million ly away; 225, 000 ly across

- looking further away looks further into the past!

Angular Measurement

- angular measurement is in degrees
- 360 degrees $\left({ }^{\circ}\right)$ in a circle
- a degree is divided into 60 arcminutes (arcmin or ')
- a minute is divided into 60 arcseconds (arcsec or '')

40

42

CLICKER: The separation between the pointer stars in the Big Dipper is 5°. What is this separation in arcminutes?
(a) 60
(b) 300
(c) 3600
(d) 18,000

41

43

Parsec ($p c$)

- another astronomical unit of distance
$1 \mathrm{pc}=3.09 \times 10^{13} \mathrm{~km}=3.26 \mathrm{ly}$
- "the distance at which 1 AU perpendicular to the observer's line of sight makes an angle of 1 arcsec"
- for even larger distances use kpc (kiloparsec) or Mpc (megaparsec)
$(\boldsymbol{e g}) 1 \mathrm{kpc}=1000 \mathrm{pc}=1 \mathrm{x} 10^{3} p c$
(eg) Earth to center of Milky Way ~ 9 kpc

CLICKER: Which of the following distances are best measured using astronomical units (AU)?
(a) distances on the Earth
(b) distances within our solar system
(c) distances between stars in our galaxy
(d) distances between galaxies

