COTTLE CREEK FINAL ASSESSMENT 2018

PREPARED FOR: DR. ERIC DEMERS – VANCOUVER ISLAND UNIVERSITY

Prepared by: Daniel Martel, Jason Rutherford & Sasha Sanvido

October 21st, 2019

Executive Summary

A team of three Vancouver Island University (VIU) Students have been involved in the monitoring of Cottle Creek under the supervision of Dr. Eric Demers. Cottle Creek is found in Linley Valley in Nanaimo BC. The stream runs from the western side of Linley Valley down into Cottle Lake, where it flows east through residential neighborhoods before it enters Departure Bay in the Straight of Georgia. Data collected from the monitoring project will be used by various organisations including the Department of Fisheries and Oceans (DFO), the City of Nanaimo, and VIU. The data will help to monitor the health and condition of Cottle Creek.

Two sampling events took place at four sites along Cottle Creek. The first sampling event was completed on October 30th, 2019 and the second sampling event took place on November 20th, 2019. The parameters studied included hydrology measurements, water quality and stream invertebrate sampling, as well as microbiology cultures. Water quality was analyzed in the laboratory at VIU by the team of students for pH, turbidity, hardness, phosphorous, nitrates, alkalinity, and conductivity; samples were also sent to ALS laboratories in Vancouver, BC in order to analyze nutrients and total metals. Temperature and dissolved oxygen were measured in field on both sampling occasions. Most of the parameters tested fell within the BC Water Quality Guidelines for aquatic life. Stream invertebrate samples obtained on October 30th resulted in surprisingly low site assessment ratings.

Due to rains during the week of November 11th the discharge recorded at all four sites on November 20th was higher than those recorded on October 30th. The higher flow of Cottle Creek impacted many water quality parameters as expected. The higher volume of water led to a change in many of the tested parameters.

ii

Table of Contents

1.0 INTRODUCTION	1
1.1 Project Overview	1
1.2 Historical Review	1
1.3 Potential Environmental Concerns	3
1.4 Project Objectives	4
2.0 Environmental Sampling & Analytical Procedures	5
2.1 Sampling Program	5
2.1.1 Sampling Site Locations & Specific Habitat Characteristics	6
2.1.2 Sampling Frequency	8
2.2 Basic Hydrology	9
2.3 WATER QUALITY	. 10
2.3.1 Field Measurements & Collection of Water Samples	. 10
2.3.2 VIU LABORATORY ANALYSES	. 10
2.3.3 ALS LABORATORY ANALYSES	.11
2.3.4 Water Quality: Quality Assurance/Quality Control	. 11
2.3.5 Data Analyses, Comparison to Guidelines	.12
2.4 MICROBIOLOGY	. 13
2.4.1 Water Sample Collection	. 13
2.4.2 VIU Laboratory Analyses	. 13
2.4.2 Microbiology Quality Assurance/Quality Control	. 13
2.5 Stream Invertebrate Communities	.14
2.5.1 Invertebrate Sample Collection	.14
2.5.2 VIU Laboratory Analyses & Data Analysis	.14
2.5.3 Invertebrate Quality Assurance/Quality Control	. 15
3.0 Results & Discussion	. 15
3.1 General Field Conditions	.16
3.1.1 Hydrology	.16
3.2 WATER QUALITY	. 19
3.2.1 Field Measurements	. 19
3.2.2 VIU Laboratory Analyses	. 20
3.2.3 ALS LABORATORY ANALYSES	. 25
3.2.4 Quality Assurance/Quality Control	. 30
3.3 Microbiology	. 30
3.4 Stream Invertebrate Communities	. 32
3.4.1 Pollution Sensitivity/Distribution	. 32
3.4.2 Abundance/Density	. 34
3.4.3 DIVERSITY/SITE RATINGS	. 35
3.4.4 Quality Assurance/Quality Control	. 37
4.0 Conclusions and Recommendations	. 37

5.0 ACKNOWLEDGEMENTS	
6.0 References	
7.0 APPENDIX	
Appendix A – Sampling Site Photos	
Appendix B – ALS Lab Results & Methods	46
Appendix C – ALS Lab Chain of Custody Confirmations	
Appendix D – Microbiological Coliform Plates	68
Appendix E – Invertebrate Data Sheets	73
Appendix F – Site Hazard Assessment	76
Appendix $G - BC$ Water Quality Guidelines	78
Appendix H – Discharge Calculations	79

List of Tables

TABLE 1: ENVIRONMENTAL MONITORING SAMPLING PROGRAM	9
TABLE 2: NANAIMO RAINFALL TOTALS (OCTOBER 22 - NOVEMBER 20, 2019)	18
TABLE 3: COTTLE CREEK DISCHARGE LEVELS DURING BOTH SAMPLING EVENTS	18
TABLE 4: WATER TEMPERATURE AND DISOLVED OXYGEN MEASUREMENTS FOR BOTH SAMPLING EVENTS	19
TABLE 5: FULL VIU WATER QUALITY ANALYSIS RESULTS	21
TABLE 6: COTTLE CREEK SITE 1 ALS LAB ANALYSIS RESULTS	26
TABLE 7: COTTLE CREEK SITE 2 ALS LAB ANALYSIS RESULTS	27
TABLE 8: COTTLE CREEK SITE 3 ALS LAB ANALYSIS RESULTS	28
TABLE 9: COTTLE CREEK SITE 4 ALS LAB ANALYSIS RESULTS	29
TABLE 10: COTTLE CREEK INVERTEBRATE CATEGORY COUNTS WITH SPECIES PER SAMPLING SITE	33
TABLE 11: COTTLE CREEK INVERTEBRATE TAXA COUNTS	35
TABLE 12: SHANNON-WEINER INDEX CALCULATIONS FOR SITE 1	36
TABLE 13: SHANNON-WEINER INDEX CALCULATIONS FOR SITE 2	36
TABLE 14: SHANNON-WEINER INDEX CALCULATIONS FOR SITE 4	37

List of Figures

Figure 1: Linley Valley (Cottle Lake) Park, Nanaimo BC	2
Figure 2: Cottle Creek, Nanaimo BC	3
Figure 3: Four Sampling Sites Along Cottle Creek	5
Figure 4: Nanaimo Rainfall (October 22-30, 2019)	17
Figure 5: Nanaimo Rainfall (November 12-20, 2019)	17
Figure 6: Cottle Creek Coliforms per Sampling Site	31
Figure 7: Cottle Creek Invertebrate Category Counts per Sampling Site	32

1.0 Introduction

1.1 Project Overview

The team of three students worked to collect various water samples and data during the two sampling events, October 30th and November 20th, and to analyze various parameters of water quality. The two separate field sampling events - one in October and one in November – were taken to analyze stream health during both low and high flow conditions. Due to the amount of rain that central Vancouver Island typically receives in November, it is relevant to sample at two different times as stream conditions can change significantly with different discharge rates. Cottle Creek is situated near many residential neighborhoods and private properties, centered in the middle of Nanaimo. Due to the location of the Creek, there are many potential sites for contamination, and monitoring of stream health is important in order to ensure the environment remains suitable for aquatic life. Water samples were analyzed in lab, and in this report the results will be compared to the BC water quality guidelines. The date compiled is used by VIU, DFO, and the City of Nanaimo.

1.2 Historical Review

Since 2012, natural resource protection students from Vancouver Island University (VIU) have been working on annual monitoring projects involving Cottle Creek in Nanaimo. This has resulted in the creation of valuable baseline data to be used for comparison over the years. Cottle Creek is situated in Linley Valley (Cottle Lake) Park in north Nanaimo, British Columbia (Figure 1). Linley Valley is part of a large area of land that has not been developed for commercial or residential properties. in May of 2019, the City of Nanaimo purchased more land in Linley Valley bringing the total area of the park to 428 acres. The City of Nanaimo has been working to acquire land and protect the park since 2004 (City of Nanaimo 2019).

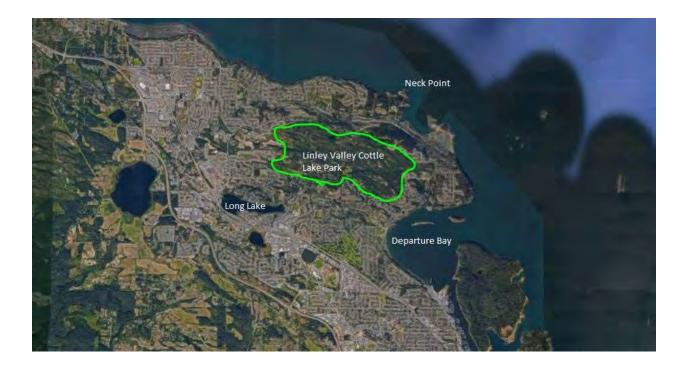


FIGURE 1: LINLEY VALLEY (COTTLE LAKE) PARK, NANAIMO BC

Cottle Creek has two main sources: the first comes from North Cottle Creek which flows from Lost Lake - roughly one kilometer north of Cottle Lake - the second, from Upper Cottle Creek which flows into the western tip of Cottle lake. Cottle Creek flows out of the eastern tip of Cottle lake and down through Linley Valley and empties into the Straight of Georgia (Figure 2) in Departure Bay near the Pacific Biological Station.

FIGURE 2: COTTLE CREEK, NANAIMO BC

Linley Valley is home to a variety of wildlife and plants. Many animals such as blacktailed deer (*Odocoileus hemionus*), beavers (*Castor canadensis*), red legged frogs (*Rana aurora*), and other amphibians reside in this area. Most of Linley Valley is mature forest which houses a multitude of songbird species and larger birds of prey such as hawks, eagles and vultures (NALT 2017). Cottle Lake itself is home to many waterfowl which rely on the lake for food and shelter. Theses species require clean and unpolluted water in order to survive.

Linley Valley is a popular recreation area for hikers, dog walkers, and cyclists. The trails are used by locals and visitors year-round. It is important to ensure that steps are taken to protect the sensitive ecosystem, and to minimize the impact of visitors.

1.3 Potential Environmental Concerns

Although large sections of Cottle Creek flow through a protected area, there are many factors that could have a negative impact on the stream. The city of Nanaimo and many residential neighborhoods surround the park. There are many new developments in construction around

Linley Valley that pose a threat to Cottle creek. Run-off from streets and construction sites could leech into the watershed and contaminate Cottle Creek. There are many rural properties and hobby farms situated around Cottle Lake that may produce harmful runoff. These properties have steep and sloping topography allowing potential fecal matter, chemicals and bacteria to flow down and contaminate the aquatic habitat that surrounds Cottle Lake and Cottle Creek. Linley Valley (Cottle Lake) Park is a popular dog walking spot and many owners do not pick up dog feces which eventually make their way into the water as well. Cottle Lake contains many aquatic plants and other vegetation that create favourable habitat for waterfowl, beavers, and other organisms that thrive in nutrient rich aquatic environments. Below the lake, Cottle Creek it exits the park and makes it way through many residential neighborhoods and road crossings. Roads and urban areas may collect oil, grease, and other toxic chemicals and metals that come from vehicles and other anthropogenic practices. Pesticides from lawns and other excessive nutrients may find their way into the creek as well (EPA 2019). All these added nutrients and chemicals could be detrimental to the health of the ecosystem and the organisms that depend on it. Cottle Creek may also be susceptible to blockages and debris falling into the stream.

1.4 Project Objectives

The Cottle Creek environmental monitoring project aims to monitor the creek and evaluate its health. Since 2012 groups of undergraduate students have been conducting theses evaluations in order to collect data to monitor the long-term health of Cottle Creek. This data is used by VIU, DFO and the City of Nanaimo to monitor and ensure that Cottle Creek is a healthy ecosystem. The evaluation took place at four different sites along Cottle Creek's course. With multiple sampling sites we will be able to monitor and record any changes in water quality as we progress down Cottle Creek's course. Multiple sampling sites help to show the "whole picture" of the stream, and

sampling along the its entirety aids in identifying sources of contaminants (if any). Comparing the data collected this year with the results from studies completed on Cottle Creek in years past allows for trends to be identified and potential discrepancies to be examined. Any significant changes from one year to another could indicate a new stressor to the environment.

2.0 Environmental Sampling & Analytical Procedures2.1 Sampling Program

As part of the Cottle Creek environmental monitoring project completed by Resource Management and Protection students, four sites along Cottle Creek were sampled (Figure 3). All work was completed by the three-student group under the guidance of Dr. Eric Demers. Two sampling events were carried out during the fall semester of 2019, with the first event taking place on October 30th, 2019 and the second event occurring on November 20th, 2019. Many parameters including water quality, stream invertebrates, microbiology and basic hydrology were sampled at each of the four sites.

FIGURE 3: FOUR SAMPLING SITES ALONG COTTLE CREEK

As referenced in the historical review portion of this report, water quality testing has been carried out at site specific locations on Cottle Creek since 2012. It was therefore concluded that the four sampling sites on the creek that were used in the past be used again for this study. This effectively maintained the continuity of the Cottle Creek water quality assessment (repeatability of the study). As these sites have been carefully chosen in the past, re-visiting and assessing the same sites again continued the legacy established in 2012, helping to ensure ease of access for sampling, and minimizing any additional potential stream impacts. Similarly, it was concluded that all previous methods and protocols (such as sample frequencies and invertebrate sampling procedures) be adhered to, to ensure that all results compiled were appropriate and valid. This ensured that any changes to the water quality of Cottle Creek would be recorded and observed.

The four sample locations on Cottle Creek (numbered 1-4 from upstream to downstream) were visited once by the team as part of the initial site visit procedure on October 17th, 2019, and twice more during the two sampling events as stated above. At the time of the initial visit, specific sampling locations were chosen as the result of much careful thought and consideration. It was ensured that invertebrate samples could be taken, that the sample site was representative of the entire stream reach, and that each site had similar characteristics so that comparisons could later be made (substrate, habitat type, canopy, etc.). Site photos are visible in Appendix A.

2.1.1 Sampling Site Locations & Specific Habitat Characteristics

Site #1 was accessed via Landalt Road off Rock City Road. Specifically, the site is located down the embankment west (upstream) of Landalt Rd and south of Arrowsmith Rd (UTM 10 U 427938mE 5452173mN, +108m elevation). Defining the downstream border of Site #1 was a large culvert that directs water under Landalt Road east towards Cottle Lake. Further upstream, there

was a man-made metal grate that acts as a dam, creating a small pool, collecting debris and slowing the flow of the creek. The substrate consists of approximately 20% cobble, 20% gravel and 60% fines. The banks were low and there was approximately 30-40% canopy cover. The canopy was comprised largely of red alder (*Alnus rubra*), with ferns, small bushes and other woody debris creating shade along the low banks. The gradient of the stream at Site #1 would be considered gradual or low, estimated at less that 2%.

Site #2 was located downstream of the foot bridge across the outflow at the eastern end of Cottle Lake (UTM 10 U 428897mE 5452249mN, +101m elevation). It was accessed via a short (roughly 0.5 km) hike off Rock City Road around Cottle Lake through Linley Valley (Cottle Lake) Park. Site #2 was estimated to have roughly 25% canopy cover, generated almost entirely by a large western red cedar (*Thuja plicata*). The riparian zone of Site #2 was comprised mostly of western sword ferns (*Polystichum munitum*), salmonberry bushes (*Rubus spectabilis*) and long grasses. Much like Site #1, the gradient of Cottle Creek at this point was very gradual, estimated at 2%. The substrate consisted roughly of 40% cobble, 50% gravel and 10% fines.

Site #3 was accessed off Nottingham Drive where the creek crosses the road under a large concrete bridge. The sampling site was on the downstream side of the bridge and required scaling down large boulders (UTM 10U 430201mE 5452003mN, +62m elevation). Cottle Creek was notably shallow under the bridge during all site visits. Once out from under the bridge, the creek widened out and deepened into a marshy area characterized by red alder trees and long swamp grasses. The in-stream substrate at site #3 was soft and somewhat swampy with about 50% of the substrate being fines, 40% being gravel and 10% consisting of cobble. The canopy cover was sparse, with less than 10% coverage being generated by the red alders spaced intermittently throughout the site.

7

Site #4 was the lowest sample site on Cottle Creek, located less than 100 m from the ocean (UTM 10 U 430583mE 5451370mN, +32m elevation). It was accessed off the east side of the busy Stephenson Point Road. There was a culvert directing Cottle Creek under the road and a storm drain emptying water collected from the pavement above. The substrate was comprised of roughly 10% boulders, 60% cobble, 10% gravel and 20% fines. There was approximately 90% cover, provided by several large Douglas fir trees (*Pseudotsuga menziesii*). The stream gradient was relatively shallow as the water came through the culvert; however, it increased and cascaded around the corner towards the ocean.

2.1.2 Sampling Frequency

For this project, two sampling events were completed, one during the low flow season and one during the high flow season. The first sampling event took place on October 30th, 2019, while the second sampling event took place on November 20th, 2019. With respect to the specific samples taken (Table 1), water quality samples, microbiology samples, basic hydrological measurements and stream invertebrate samples were taken at the sites along Cottle Creek. During the first sampling event, VIU water quality samples were taken at all 4 sites, hydrological measurements were taken at all 4 sites and ALS water quality samples were taken at sites 1, 2 and 4. Microbiology samples were taken at all sites during the first sampling event, and stream invertebrate samples were taken at all sites during the first sampling event, only VIU water quality samples and hydrological measurements were collected at all 4 sites; microbiological samples were not completed. ALS water quality samples were taken at sites 1, 2 and 4, while stream invertebrate samples were not taken. Stream invertebrate analyses were not completed during the second sampling event, as high-water levels made sampling dangerous. The decision to not complete invertebrate samples or ALS samples at site 3 was made in order to conserve

resources; these parameters had not been sampled at site 3 during any past studies. It was hypothesized that past studies excluded site 3 from ALS and invertebrate sampling due to its unrepresentative habitat characteristics (marsh, swamp, still water).

		Sample Sil	e Number	
	#1	#2	#3	#4
Samples to be taken during event 1 (Oct. 30 th , 2019):	 VIU Water quality ALS Water Quality Microbiology Hydrology Invertebrates 	 VIU Water quality ALS Water Quality Microbiology Hydrology Invertebrates 	 VIU Water quality Microbiology Hydrology 	 VIU Water quality ALS Water Quality Microbiology Hydrology Invertebrates
Samples to be taken during event 2 (November 20 th , 2019):	 VIU Water Quality ALS Water Quality Hydrology 	 VIU Water Quality ALS Water Quality Hydrology 	 VIU Water Quality Hydrology 	 VIU Water Quality ALS Water Quality Hydrology

TABLE 1: ENVIRONMENTAL MONITORING SAMPLING PROGRAM

2.2 Basic Hydrology

Basic hydrological measurements were collected and calculated at all 4 sites during each sampling event in order to provide some hydrological contexts to the other test results. These hydrological measurements included the average wetted width (m), average cross-sectional water depth (m) as well as flow (m/s) for a 5 m representative section of stream in each site. A measuring tape was used to obtain the wetted width and cross-sectional water depth measurements. To measure flow, a ping pong ball was timed with a stopwatch as it flowed down the chosen 5 m of stream. From these measurements, it was possible to calculate discharge (m³/s) by multiplying the cross-sectional area by the mean water velocity (flow). These discharge results helped provide

contextual information regarding the changes between low flow samples and high flow samples, aiding in the interpretation of the data and explaining some of the trends.

2.3 Water Quality

2.3.1 Field Measurements & Collection of Water Samples

Most of the studied parameters were analysed in the laboratory at Vancouver Island University and by ALS Labs in Vancouver, British Columbia. With respect to measurements taken and analysed in situ, temperature (°C), dissolved oxygen (mg/L) and discharge (m³/s) were collected, recorded and calculated in the field at all 4 sites during both sampling events. Water temperature was measured to the nearest 0.1°C, while dissolved oxygen was measured to the nearest 0.1 mg/L and discharge was calculated to the nearest 0.01 m³/s. Samples collected/filled to be analysed in a lab setting at a later time included VIU water quality bottles (1 per site, a replicate at site 1, both sampling events), ALS water quality bottles (3 per site at sites 1, 2 and 4, first sampling event only, no replicates), microbiological Whirl-Pak samples (1 per site, a replicate a site 1, first sampling event only) and stream invertebrates (3 replicates each at sites 1, 2 and 4, first sampling event only).

2.3.2 VIU Laboratory Analyses

Upon collecting water samples in the field, the VIU water quality analyses took place in a lab after each sampling event. The first analyses took place on October 30th, 2019, while the second laboratory analyses took place on November 20th, 2019. All analyses were conducted under the guidance of Dr. Eric Demers. Phosphate (mg/L PO₄³⁻), nitrate (mg/L NO₃⁻), hardness (mg/L CaCO₃), Turbidity (NTU), pH and Alkalinity (CaCO₃) were measured from the water collected. In the VIU lab, 10 of the 12 samples (4 sites plus 1 replicate for each sampling event) were tested for all the parameters listed above. The 2 additional trip blanks (1 per sampling event) were tested for nitrate and phosphate. All equipment/test kits used for analysing the water samples belong to Vancouver Island University. The same equipment was used to test the samples from both sampling events.

2.3.3 ALS Laboratory Analyses

During each sampling event, 3 different water samples were collected at sites 1, 2 and 4 and sent to ALS Labs in Vancouver, BC. It was imperative to add the correct chemical preservatives to the corresponding samples, as incorrectly doing so would alter the results. ALS was able to repeat physical parameters tested by the students in the lab at VIU (conductivity, hardness, pH) as well as test for anions and nutrients as well as total metals. Submitting samples to ALS during both sampling events allowed students to make comparisons between the two sampling events and continued the legacy of the monitoring program, banking valuable data.

2.3.4 Water Quality: Quality Assurance/Quality Control

Throughout the environmental monitoring project that was carried out on Cottle Creek, it was ensured that certain quality assurance (QA) and quality control (QC) measures were taken. QA measures focused on preventing poor results, while QC measures focused on identifying any potential poor results. Many QA/QC measures were adopted in order to ensure and maintain the integrity of the water quality sampling program. All samples were taken from the same location at each site during both sampling events. All samples were taken below the water surface to ensure that no surface contaminants were gathered. All samples were gathered in order of downstream to upstream (4, 3, 2, 1) to avoid unnecessary site or sample contamination. All sample containers that had not been previously sterilized were rinsed 3 times in situ (ALS sample bottles were presterilized). All personnel collecting samples wore latex gloves and clean and appropriate containers were used to collect all samples. The collected samples were kept in a cooler on ice or in a refrigerator until further analyses were conducted. In the VIU lab setting, all personnel wore latex gloves and official VIU lab coats. All beakers, graduated cylinders and test jars were also rinsed 3 times prior to use. One trip blank containing distilled water (also known as a field blank) was always carried during sampling occasions to identify any potential contamination (bias or imprecision) introduced or picked up during sampling, transportation or storage. One field duplicate/replicate was taken at site 1 to help establish sampling, environmental and analytical precision. It should also be noted that in addition to testing for anions, nutrients and total metals, ALS Labs also measured the same basic water quality parameters that students measured in the VIU lab. These "lab replicates" were an additional QA/QC measure that allowed students to compare their results to the more precise ALS results to detect any discrepancies and improve analytical precision.

2.3.5 Data Analyses, Comparison to Guidelines

Upon collecting and analysing the VIU water quality samples, these results were compared to the ALS Lab results as previously stated. Further analysis was completed by comparing both the VIU lab results and the ALS Lab results to the Guidelines for Interpreting Water Quality Data (Ministry of Environment and Climate Change Strategy 2019). This allowed students to determine whether Cottle Creek may be suitable for aquatic life, and to determine if there were any parameters that were above the allowable limits as stated in the guideline. Upon analysing the VIU and ALS water quality results, students discussed discrepancies and parameters that were over/under the guidelines, attempting to identify possible reasons for the discrepancies and inadequate water quality parameters. To conclude these findings, students included recommendations as to how

further testing on Cottle Creek could be improved, thus potentially improving the water quality data of the creek.

2.4 Microbiology

2.4.1 Water Sample Collection

Microbiology samples were collected from all 4 sites on Cottle Creek during the first sampling event only. All sampling was completed using sterile 100 ml Whirl-Pak bags that had been previously labeled and organized.

2.4.2 VIU Laboratory Analyses

Microbiological samples were analysed through coliform incubation and counts. 20 ml water samples, petri dishes and m-ColiBlue24 broth were used to incubate coliforms over a 24-hour period at 35°C. The number of Colony Forming Units (CFU/100 ml) were noted for each sample, where attention was paid to the number of fecal coliforms (blue) as compared to the number of non-fecal coliforms (red). The numbers of each were totaled and presented in CFU/100 ml (to the nearest 1 CFU/ 100 ml), and the fecal coliforms were expressed as a percentage (%) of the total coliform count.

2.4.2 Microbiology Quality Assurance/Quality Control

As previously discussed, it was ensured that certain QA/QC measures were taken throughout the entire Cottle Creek environmental monitoring project. QA measures focused on preventing poor results, while QC measures focused on identifying any potential poor results. Many QA/QC measures were adopted in order to ensure and maintain the integrity of the microbiology sampling and analysis program. As with water quality samples, microbiology samples were conducted from downstream to upstream (sites 4, 3, 2, 1) to ensure that downstream water samples were not

contaminated by upstream testing disturbances. The pre-sterilized Whirl-Pak bags were filled with water from below the surface to ensure that no surface contaminants entered the bags. One field duplicate/replicate was taken at site 1. Once collected, all samples were stored in a cooler on ice until analysis could be completed. All personnel collecting the samples wore latex gloves. In the lab setting, students wore VIU lab coats and latex gloves, and used sterilized tweezers to handle all pre-sterilized incubation pads to avoid sample contamination. All beakers, graduated cylinders and test jars were also rinsed 3 times prior to use. It should also be noted that a filtration blank was run with distilled water and no bacterial colonies were observed.

2.5 Stream Invertebrate Communities

2.5.1 Invertebrate Sample Collection

Stream invertebrates were sampled at sites 1, 2 and 4 during the first sampling event only. Three field duplicates/replicates (triplicate samples) were collected at each sample site (0.09 m^2 each for a total of 0.27m^2 sampled per site) in the hopes that this would provide an accurate reflection of the stream invertebrate population in Cottle Creek. All samples were collected using a Hess sampler and transported in plastic containers to the VIU laboratory where they were analysed. No preservatives were added to keep the invertebrates alive and make analyses of samples easier for the students.

2.5.2 VIU Laboratory Analyses & Data Analysis

Upon collecting the invertebrate samples and transporting them to the VIU laboratory, the invertebrates were organized into taxonomic groups and counted. To make this process easier, the invertebrates were removed from the transport containers and emptied onto large trays. A microscope was used to aid in spotting and organizing the invertebrates. As directed by *The*

Streamkeepers Handbook (1995), each taxonomic group was placed in one of three categories. This data was used to determine the predominant taxon, abundance, density, diversity and overall invertebrate counts. This was then used to create an overall site assessment rating. This data was also analysed by use of the Shannon-Weiner Index to assess the species diversity in Cottle Creek. All these results were used to determine a representation of water quality in terms of the streams ability to support life.

2.5.3 Invertebrate Quality Assurance/Quality Control

As previously discussed, it was ensured that certain QA/QC measures were taken throughout the entire Cottle Creek environmental monitoring project. QA measures focused on preventing poor results, while QC measures focused on identifying any potential poor results. Many QA/QC measures were adopted in order to ensure and maintain the integrity of the invertebrate sampling and analysis program. As with water quality samples and microbiology samples, invertebrate samples were conducted from downstream to upstream (sites 4, 3, 2, 1) to ensure that downstream water samples were not contaminated by upstream testing disturbances. All samples were kept in a cooler and handled carefully, in order to keep the invertebrates alive.

3.0 Results & Discussion

Field measurements and samples from each of the four sites along Cottle Creek were collected during two events according to the methods discussed. The samples were then transported to VIU for examination of water quality, microbiology, and invertebrate communities. Samples were also sent to the ALS laboratory in Vancouver, BC for more in-depth water quality analyses. In this section, field conditions, hydrological measurements, field measurements, and results from sample analyses will be discussed and compared to water quality guidelines for aquatic life.

3.1 General Field Conditions

3.1.1 Hydrology

Hydrological measurements occurred at all four sites during both sampling events. The weather immediately prior to each event impacted the creek's discharge rates significantly. This in turn, influenced many of the other parameters that were sampled and caused discrepancies between sampling event 1 and sampling event 2.

Prior to the first sampling event, the city of Nanaimo had seen little rainfall in the past 8 days (Figure 4). As demonstrated in Figure 5 and summarized in Table 2, significant rain fell between sampling events 1 and 2. All discharge rates for sampling event 1 were measured to be quite low when compared to the data from previous years. Discharge was measured at 0.01m³/s at the first site, 0.04 m³/s at the second, 0.05 m³/s at the third, and 0.04 m³/s at the fourth site. The lowest discharge rate was seen at site 1. This is most likely due to its geographical location above Cottle Lake, where it can be argued that the sites below the lake are benefiting from the lake's buffering effects.

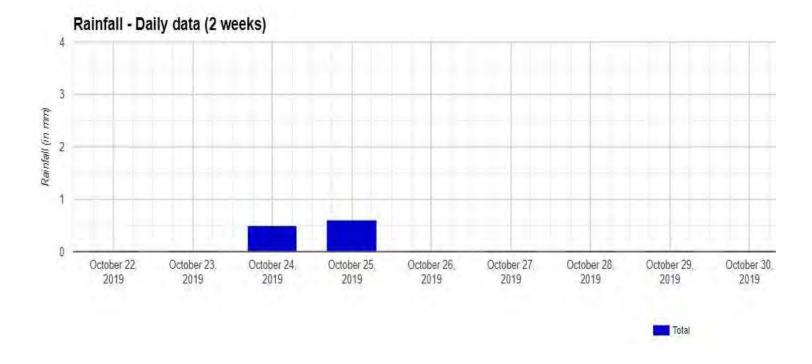


FIGURE 4: NANAIMO RAINFALL (OCTOBER 22-30, 2019)



FIGURE 5: NANAIMO RAINFALL (NOVEMBER 12-20, 2019)

TABLE 2: NANAIMO RAINFALL TOTALS (OCTOBER 22 - NOVEMBER 20, 2019)

			Nov 6 2019		0.0 mm
Date	Total		Nov 5 2019	E	0.0 mm
Nov 20 2019	L	0.0 mm	Nov 4 2019	L	0.1 mm
Nov 19 2019		0.0 mm	Nov 3 2019	0	0.0 mm
Nov 18 2019	6	18.4 mm	Nov 2 2019	0	0.0 mm
Nov 17 2019	L	0.1 mm	Nov 1 2019	E	0.0 mm
Nov 16 2019	15 mm - 3	12.1 mm	Oct 31 2019		0.0 mm
Nov 15 2019		0.9 mm	Oct 30 2019		0.0 mm
Nov 14 2019		3.4 mm	Oct 29 2019	U	0.0 mm
Nov 13 2019	0	0.0 mm	Oct 28 2019	0	0.0 mm
Nov 12 2019	1	0.8 mm	Oct 27 2019	0	0.0 mm
Nov 11 2019		18.1 mm	Oct 26 2019	0	0.0 mm
Nov 10 2019		0.0 mm	Oct 25 2019	1 C	0.6 mm
Nov 9 2019	10 S	0.5 mm	Oct 24 2019	12	0.5 mm
Nov 8 2019		3.0 mm	Oct 23 2019	1	0.0 mm
Nov 7 2019		0.0 mm	Oct 22 2019	-	0.0 mm

As was summarised in the above figures and table, significant rain fell prior to the second sampling event. This resulted in higher discharge rates for Cottle Creek. Site 1 had the lowest discharge for sampling event 2 at 0.03 m³/s likely because excess water had flushed into the lake during the one day without rainfall before sampling. Sites 2, 3, and 4 had significantly higher discharge rates than the first sampling event at 0.20 m³/s, 0.23 m³/s, and 0.21 m³/s respectively. The high rainfall rates earlier in the week clearly raised the water levels in Cottle Lake, and as a result the sites below the lake were experiencing higher flow rates. Table 3 below summarizes the discharge measurements for both sampling events. Full calculations can be seen in Appendix H.

TABLE 3: COTTLE CREEK D	Discharge Levels	S DURING BOTH	Sampling Events
-------------------------	------------------	---------------	-----------------

	Sampling Event 1 – Iow flowSampling Event 2 – high flow					flow		
Site	1	2	3	4	1	2	3	4
Discharge (m³/s)	0.01	0.04	0.05	0.04	0.03	0.20	0.23	0.21

3.2 Water Quality

3.2.1 Field Measurements

Temperature and dissolved oxygen were measured at all four sites during both sampling events. On October 30th, 2019 atmospheric temperature was lower, and so stream temperature was colder which increased dissolved oxygen. On November 20th, 2019, the atmospheric temperature was slightly higher, which impacted the stream temperature and dissolved oxygen during that sampling time.

Temperature:

Water temperatures were recorded as slightly colder during the first event than the second (Table 4), likely due to the air temperatures at the time of sampling: 10.1°C during the first event, and 11.5°C during the second. Average water temperature between all four sites during the first sampling event was 5.7°C, and during the second was 8.1°C. The rise in temperature had an expected effect on levels of dissolved oxygen.

TABLE 4: WATER TEMPERATURE AND DISSOLVED OXYGEN MEASUREMENTS FOR BOTH SAMPLING EVENTS

	(October:	30 th , 2019)	November 20 th , 2019			
Site	1	2	3	4	1	2	3	4
Temperature (°C)	5.9	5.3	5.6	5.9	8.4	7.2	8.0	8.4
Dissolved Oxygen (mg/L)	11.5	10.0	11.6	12.4	11.1	8.9	11.2	11.5

Dissolved Oxygen:

Due to the rise in water temperature between sampling events, dissolved oxygen showed a slight decrease at each site. The mean loss of dissolved oxygen through all sites between sampling events

was recorded to be 0.7mg/L. Site one's dissolved oxygen decreased from 11.5mg/L to 11.1mg/L, site two from 10.0mg/L to 8.9mg/L, site three from 11.6mg/L to 11.2mg/L, and site four from 12.4 mg/L to 11.5mg/L.

Site 2 (at the outflow of Cottle Lake) was recorded to have had the lowest DO levels during both sampling events. Reduced levels of oxygen may likely be caused by increased biochemical oxygen demand in the lake water, as well as the stagnancy of the water entering the creek. On the other end of the spectrum, site 4 likely exhibited the highest DO levels due to the perched culvert stirring oxygen into the water as it fell back into the natural creek.

Although there are notable differences in DO between sites and sampling times, all levels fall above the BC Water Quality Guideline for buried embryo and alevin stages of aquatic life (≥9mg/L).

3.2.2 VIU Laboratory Analyses

In the VIU lab, students measured conductivity, hardness, turbidity, nitrates, phosphate, pH, and alkalinity of samples taken from the four stations along Cottle Creek during both sampling occasions. Those parameters measured at the VIU laboratory showed expected trends regarding an increase in discharge. See table 5 for all VIU lab results.

		S	ample	e Even	t 1		Sample Event 2					Guidelines	
Parameter	Site	e 1	Site 2	Site	Site	Blank	Site	e 1	Site	Site	Site	Blank	
	S	R	2	3	4		S	R	2	3	4		
Phosphate (mg/L PO ₄ 3)	0.08	0.05	0.11	0.04	0.02	0.02	0.04	0.03	0.02	0.02	0.04	0.02	Mesotrophic 0.010-0.025
Nitrates (mg/L NO ₃ -)	0.63	0.18	0.12	1.00	0.44	0.02	1.31	1.47	0.42	1.08	0.92	0.03	32.8
Hardness	72	68	64	64	76	/	60	72	56	64	56	/	Soft <60
(mg/L CaCO₃)													Hard >120
Conductivity (µS/cm)	161	168	194	172	189	/	151	153	166	151	180	/	Variable
Turbidity (NTU)	1.47	1.49	2.99	1.17	2.53	/	3.06	3.05	3.58	2.43	2.53	/	Variable
рН	6.0	5.9	6.1	6.1	6.1	/	7.8	7.9	7.8	7.8	7.8	/	6.5-9
Alkalinity (mg/L CaCO3)	50.0	51.2	51.2	55.2	60.0	/	49.2	52.0	50.8	48.0	54.8	/	>20
DO (mg/L)	11.5	11.5	10.0	11.6	12.4	/	11.1	11.1	8.9	11.2	11.5	/	>5
Temp. ('C)	5.9	5.9	5.3	5.6	5.9	/	8.4	8.4	7.2	8.0	8.4	/	Variable
Discharge (m ³ /s)	0.01	/	0.04	0.05	0.04	/	0.03	/	0.20	0.23	0.21	/	Variable

TABLE 5: FULL VIU WATER QUALITY ANALYSIS RESULTS

Conductivity:

Conductivity is a measure of charged ions in the water column, analyzed by placing a probe with two anodes in the water and passing electricity through one anode to the other. Average conductivity of streams on the western coast of Canada typically stays below 100µS/cm. Conductivity levels measured at the VIU lab showed a trend of decrease through the two sampling events at all four stations. Site 2 showed the largest decrease from the first sampling event, dropping from 194µS/cm to 166µS/cm. On average, sites showed a mean decrease of 16.6µS/cm from the first sampling occasion to the second. The decrease in conductivity is likely due to the dilution of ions with the increased discharge levels of the stream.

Higher than normal conductivity may be due to anthropogenic sources such as salt from roads, or effluent runoff. Sites 3 and 4 likely had higher conductivity levels than upstream sites 1 and 2 due to the increase of storm drains and infrastructure surrounding the creek further down.

Hardness:

Hardness equates to the amount of calcium, magnesium, and other present metallic ions in a stream, measured by calcium carbonate in the water. Softer water can breakdown metals into the water column, and raise toxicity, while hard water causes metals to precipitate – effectively buffering any toxic heavy metals which may be present.

The hardness levels in Cottle Creek were overall quite neutral, falling mainly between the BC water quality guideline parameters of hard (>120mg CaCO3/L) and soft (<60mg/L), but notably on the softer side. Sites 2 and 4 fell into the soft category during the second sampling occasion, both measuring at 56mg CaCO3/L. Hardness likely dropped due to dilution in the stream, with a mean decrease of 7.2mg/L. As the Creek water is on the softer side of the hardness spectrum, the stream may be slightly more susceptible to toxicity from heavy metals.

Turbidity:

Turbidity is a measure of particles in water which affect the clarity – if levels are too high, turbid water can block light, clog gills, and support excess bacterial growth.

Turbidity in the stream remained low (1.17-3.58 NTU's) throughout sampling, however it did increase by an average of 1.00 NTU's from the first event to the second. The increase is likely due

to the rise in flow sweeping in particles from the banks, as well as sediments on the stream floor being stirred up into the water column.

Nitrates:

Nitrate and phosphate are the two major nutrients required by plants and algae to photosynthesize and grow. When overly abundant, these nutrients can cause harmful algal blooms and can quickly deplete dissolved oxygen levels in water. Nitrate is mainly added to water sources from anthropogenic inputs such as fertilizer runoff, effluents, or recreational activities; without human nitrogen input, nitrate levels are normally <0.3mg/L. Nitrogen occurs naturally in streams due to inputs from nitrogen fixation, atmospheric deposition and watershed runoff.

Nitrate results in Cottle Creek ranged from 0.12-1.47mg/L (well below the BC water quality guideline maximum 32.8 mg/L). Nitrates increased at an average of 0.56 mg NO3-/L from the first event to the second, most likely due to the first major 'flush' of runoff in the season.

Phosphate:

As the freshwater on Vancouver Island is typically P-limited, the amount of phosphate in a water column determines the rate at which plant and algae growth occurs. High phosphate levels can cause excessive growth and resulting eutrophication, and low levels can create oligotrophic waters. In the VIU lab, phosphate levels were measured as higher than the BC water quality guideline (0.010-0.025mg/L) in Cottle Creek at site 1, 2, and 3 during the first event, and sites 1 and 4 during the second. Site 2 had the highest recorded measurement of phosphate (0.11mg/L) during the first sampling event, likely due to the outflow of Cottle Lake during the low flow season. During the second event, phosphate levels dropped in sites 1, 2, and 3 – site 1 remaining above the guideline – however site 4 which was within the guidelines the first event rose above the guidelines at the

second event. The decrease in sites 1 through 3 can most likely be explained by dilution but leaves site 4 as an outlier.

The ALS study of orthophosphate revealed much lower values than VIU. Levels were below the minimum detection limit except for site 2 during the second sampling event, which even then was detected below the BC water quality guideline for total phosphorus.

pH:

The first time pH was measured, the creek results were slightly more acidic than guidelines had outlined as acceptable for fish habitat (acceptable pH: 6.5-9). Results from the first sampling event ranged from 5.9 to 6.1. The low pH could be due to a variety of factors including pollution and eutrophication, however the main contributors to the slight acidity of the stream are most likely low rainfall rates during the summer and low hardness in the stream. Decreased discharge results in less acid dilution, and low hardness values limit the water's ability to maintain a neutral pH.

After the increase of discharge, the pH rose into the acceptable levels laid out in the BC water quality guidelines, the higher water levels likely flushed out any present acid sources and significantly diluted the stream.

Alkalinity:

Alkalinity is the measurement of water's ability to neutralize acid. Higher alkalinity levels allow a stream to effectively buffer added acids for longer. Levels were within the range of low acid sensitivity even after a slight decrease with the higher discharge during the second event.

3.2.3 ALS Laboratory Analyses

Results from the ALS lab revealed minute changes (mainly below 1mg/L) throughout the two sampling events, likely due to dilution from increased flow, and the introduction of runoff. Although less significant than the VIU lab results, trends reflecting the dilution are still present.

Conductivity decreased slightly at each site from the first to the second analysis, as did hardness and calcium levels, sodium also fell by 1mg/L.

Heavy Metals tested for in the ALS laboratory were all within the BC water quality guidelines. All parameters measured at ALS which were present above the minimal detection limit are reflected in Tables 6-9.

Parameter*	Event 1	Event 2
Conductivity µS/cm	168	165
Hardness mg CaCO ₃ /L	62.3	58.0
рН	7.72	7.77
Ammonia mg/L	0.0067	0.0095
Nitrate (N) mg/L	0.278	0.564
Nitrite (N) mg/L	0.0018	0.0020
Total Nitrogen mg/L	0.525	0.824
Orthophosphate (P) mg/L	<0.0010	0.0022
Phosphorus (P) mg/L	0.0089	0.0127
Calcium mg/L	16.8	15.7
Iron mg/L	0.421	0.722
Magnesium mg/L	4.96	4.57
Manganese mg/L	0.0306	0.0883
Silicon mg/L	6.58	6.57
Sodium mg/L	11.0	10.2
	0.0693	0.0649

TABLE 6: COTTLE CREEK SITE 1 ALS LAB ANALYSIS RESULTS

	Event 1	Event 2
Conductivity µS/cm	168	165
Hardness mg CaCO ₃ /L	62.3	58.0
рН	7.72	7.77
Ammonia mg/L	0.0067	0.0095
Nitrate (N) mg/L	0.278	0.564
Nitrite (N) mg/L	0.0018	0.0020
Total Nitrogen mg/L	0.525	0.824
Orthophosphate (P) mg/L	<0.0010	0.0022
Phosphorus (P) mg/L	0.0089	0.0127
Calcium mg/L	16.8	15.7
Iron mg/L	0.421	0.722
Magnesium mg/L	4.96	4.57
Manganese mg/L	0.0306	0.0883
Silicon mg/L	6.58	6.57
Sodium mg/L	11.0	10.2
Strontium mg/L	0.0693	0.0649

TABLE 7: COTTLE CREEK SITE 2 ALS LAB ANALYSIS RESULTS

TABLE 8: COTTLE CREEK SITE 3 ALS LAB ANALYSIS RESULTS

Parameter*	Event 1	Event 2
Conductivity µS/cm	170	161
Hardness mg CaCO3/L	59.4	54.1
рН	7.50	7.52
Ammonia mg/L	0.0189	0.0133
Nitrate (N) mg/L	0.0765	0.202
Nitrite (N) mg/L	0.0025	0.0013
Total Nitrogen mg/L	0.433	0.477
Phosphorus (P) mg/L	0.0122	0.0122
Calcium mg/L	16.2	14.8
Iron mg/L	0.631	0.686
Magnesium mg/L	4.61	4.18
Manganese mg/L	0.0280	0.102
Silicon mg/L	5.07	5.83
Sodium mg/L	11.3	10.8
Strontium mg/L	0.0671	0.0604

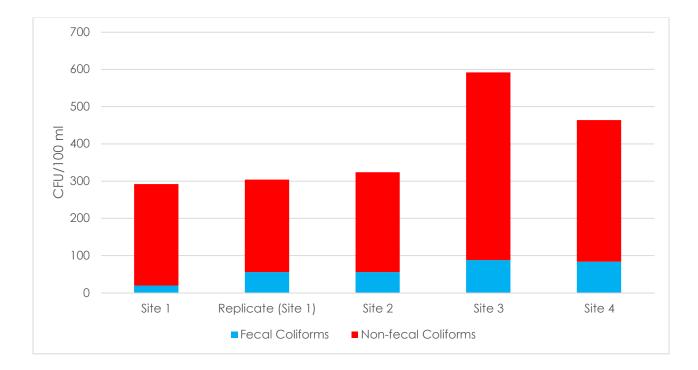
Table 9: Cottle Creek Site 4 ALS Lab Analysis Results

Parameter*	Event 1	Event 2
Conductivity µS/cm	185	171
Hardness mg CaCO ₃ /L	67.8	58.4
рН	7.87	7.84
Ammonia mg/L	<0.0050	0.0070
Nitrate (N) mg/L	0.440	0.448
Nitrite (N) mg/L	0.0014	0.0013
Total Nitrogen mg/L	0.685	0.703
Phosphorus (P) mg/L	0.0065	0.0106
Calcium mg/L	18.6	16.0
Iron mg/L	0.422	0.504
Magnesium mg/L	5.19	4.50
Manganese mg/L	0.0473	0.0254
Silicon mg/L	6.05	6.12
Sodium mg/L	12.2	11.6
Strontium mg/L	0.0690	0.0626

Due to the relative softness of Cottle Creek, metals are more likely to dissolve into the water column and cause toxicity. Monitoring heavy metals yearly ensures a close eye is kept on the health of this stream for years to come.

3.2.4 Quality Assurance/Quality Control

All afore mentioned quality assurance and control methods were conducted appropriately during water quality sampling analysis, and due to strict adherence, confidence in the water quality data is high, however there were some noted concerns. Replicate data measured at site 1 differed significantly for some parameters, this may be due to the low number of replicates (1), results may have been more consistent if multiple replicates were taken at each site.


The ALS results also differed from the VIU results – phosphate levels were measured to be significantly lower at ALS, and pH was measured to be higher and consistent throughout both events compared to the VIU results. Other parameters (conductivity and hardness) seemed to have less of a discrepancy between the two labs' analyses.

3.3 Microbiology

Coliform culturing is a way of viewing the total number of bacteria in a sample as well as those bacteria introduced from fecal sources. The microbiology of a water source is often analyzed to monitor the potential for pathogens to be present in that stream; pathogens like giardia and E. coli can be difficult to test for as they can occur in such small amounts. Generally, the more fecal coliforms present in a sample, the more likely there are harmful pathogens present in the water.

The 2019 results (Figure 1) showed relatively low counts of CFU's in Cottle Creek compared to the 2018 data. However, an obvious spike was present at site 3 – rising from just over 300

CFU/100ml to 600 CFU/100ml - site 4 also had higher results than the first two sites. These results were unexpected at site 2, as Cottle Lake is home to many waterfowl, amphibians, and possibly beavers – coliforms were expected to spike at the lake outflow. The jump in sites 3 and 4 may simply be explained by their locations further down the watershed and deeper into the Nanaimo infrastructure. As well, site 3 was very marshy, stagnant and was characterized by lots of vegetation and animal sign. This may explain the high coliform counts at site 3.

FIGURE 6: COTTLE CREEK COLIFORMS PER SAMPLING SITE

It is worth noting that the fecal coliform percentages were relatively low in all four sites, lower than previous years. In 2018 for example, fecal coliforms outnumbered non-fecal coliforms at many of the sampling sites. All 2019 microbiological plates are visible in Appendix D.

3.4 Stream Invertebrate Communities

3.4.1 Pollution Sensitivity/Distribution

The stream invertebrate results from Cottle Creek seemed to contradict the water quality results obtained from the same sampling sites. As seen in Figure 7 and Table 10, most of the invertebrates sampled belonged to category 2 and category 3. This is interesting, as category 1 invertebrates are the most pollution sensitive, while category 2 invertebrates are only somewhat pollution sensitive and invertebrates belonging to category 3 are considered pollution tolerant. Of note is the fact that category 1 invertebrates were completely absent from sampling site 2 at the outflow of Cottle Lake.

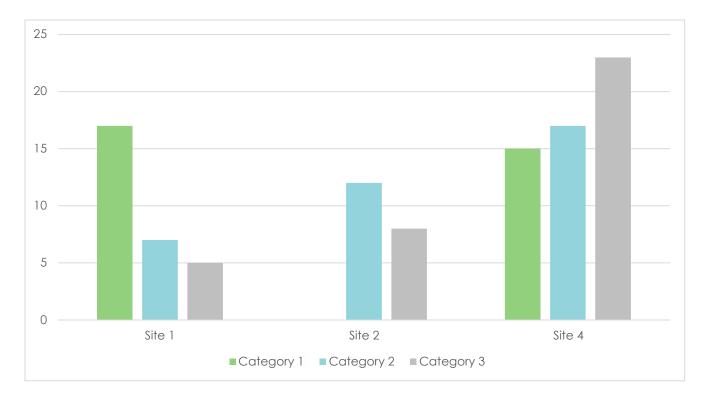


FIGURE 7: COTTLE CREEK INVERTEBRATE CATEGORY COUNTS PER SAMPLING SITE

Sit	le 1		Sit	e 2		Site 4					
Common Name	#	Category	Common Name	#	Category	Common Name	#	Category			
Mayfly Nymph	3	1	Clam Mussel	8	2	Mayfly Nymph	15	1			
Stonefly Nymph	14	1	Cranefly Larva	1	2	Amphipod	17	2			
Cranefly Larva	7	2	Dragonfly Larva	1	2	Aquatic Worm	20	3			
Aquatic Worm	4	3	Amphipod	2	2	Midge Larva	3	3			
Midge Larva	1	3	Aquatic Worm	8	3						

TABLE 10: COTTLE CREEK INVERTEBRATE CATEGORY COUNTS WITH SPECIES PER SAMPLING SITE

To explain these results, many things should be considered. All sampling sites consisted of similar substrate material makeup, water temperatures, water flows as well as in-stream and canopy cover. The water quality results for site 2 provided no clues with respect to the low category 1 (EPT) invertebrate counts, and there was nothing to explain the dominance by category 2 and 3 invertebrates at all sampling sites. After much discussion, it was discovered that geography and anthropogenic factors may be playing a role. Being that site 1 is the farthest away from development (roads, houses and other infrastructure) and given that it is the most upstream site, it was understandable as to why this site may be characterized by the lowest pollution levels.

Looking back to previous studies, it should be noted that similar trends were discovered with respect to low (or no) EPT invertebrates at site 2. In 2018, invertebrate sampling results yielded no category 1 invertebrates at site 2. In 2017 only one category 1 invertebrate was collected, and in 2016 only two category 1 invertebrates were identified at site 2 (VIU 2018, VIU 2017, VIU 2016). When discussing factors that may contribute to pollution levels and decrease the ability of EPT invertebrates to survive at site 2, Cottle Lake, the surrounding geography and the anthropogenic

uses of the area must be considered. Although no official tests were completed, Cottle Lake is seen to be relatively eutrophic as indicated by murky water, underwater and surface vegetation, an abundance of waterfowl, and rather stagnant sections of water. Cottle lake acts as a basin, collecting water from the surrounding area. This area is characterized by hobby farms and popular dog walking trails. As site 2 is located directly downstream from Cottle Lake, water quality may be impacted in a way not picked up in the VIU or ALS water quality parameters.

3.4.2 Abundance/Density

The abundance of invertebrates at each site is summarized as follows: 29 invertebrates were collected from site 1, 20 invertebrates were collected from site 2 and 55 invertebrates were collected from site 4. Ignoring which invertebrates were categorized as pollution sensitive, somewhat pollution tolerant and pollution tolerant, site 4 is the healthiest site, followed by site 1 and then site 2. It is interesting to note that even when considering abundance only, site 2 had the poorest results.

The density of invertebrates for the four sampling sites on Cottle Creek was calculated using the Invertebrate Survey Field Data Sheets (Appendix E). The total number of organisms collected from each site was divided by the sampling area of 0.27 m². This provided an invertebrate diversity calculation indicating the number of invertebrates per 1 m². Sampling site 1 had a density of 107.4 invertebrates/m², site 2 had a density of 74.1 invertebrates/m² and site 4 had a density of 203.7 invertebrates/m². Again, ignoring the sensitivity of each invertebrate to pollutants, site 4 would seem to be the healthiest site based on density, followed by sites 1 and 2. Site 2 again received the poorest rating.

3.4.3 Diversity/Site Ratings

Invertebrate diversity was calculated using the number of invertebrate taxa collected at each site. These results were recorded on the provided Invertebrate Survey Field Data Sheets (Appendix E). As seen in Table 11, there were a total of 10 different taxa, 4 from category 1, 3 from category 2 and 3 from category 3. At site 2, a total of 5 invertebrate taxa were collected; 4 from category 2 and 1 from category 3. At site 4, there were a total of 8 different taxa; 3 from category 1, 1 from category 2 and 4 from category 3.

Sil	le 1		Site	e 2		Site 4					
Species	#	# of Taxa	Species	#	# of Taxa	Species	#	# of Taxa			
Mayfly Nymph	3	1	Clam Mussel	8	1	Mayfly Nymph	15	3			
Stonefly Nymph	14	3	Cranefly Larva	1	1	Amphipod	17	1			
Cranefly Larva	7	3	Dragonfly Larva	1	1	Aquatic Worm	20	3			
Aquatic Worm	4	2	Amphipod	2	1	Midge Larva	3	1			
Midge Larva	1	1	Aquatic Worm	8	1						

TABLE 11: COTTLE CREEK INVERTEBRATE TAXA COUNTS

Just as the categorized results showed, these taxon count results indicate that site 1 was the healthiest, followed by site 4 and then site 2. The overall Site Assessment Ratings as calculated on the Invertebrate Survey Interpretations Sheet (Appendix E) followed the same trend. Site 1 had the highest site assessment rating at 2.75. Site 4 followed closely behind at 2.25, and site 2 showed the poorest site assessment rating at 1.50. For context, the ratings are interpreted as follows: 1 is poor, 2 is marginal, 3 is acceptable and 4 is good. The highest site assessment rating of the three sites sampled was still only marginal.

Students also calculated the Shannon-Weiner diversity index. The results are shown below in tables 12-14.

Common Name:	Column C	рі (С/Т)	ln (pi)	pi*ln(pi)
Mayfly Nymph	3	0.103448276	-2.268683541	-0.23469140
Stonefly Nymph	14	0.482758621	-0.728238500	-0.35156341
Cranefly Larvae	7	0.241379310	-1.421385681	-0.34309310
Aquatic Worm	4	0.137931034	-1.981001469	-0.27324158
Midge Larva	1	0.034482759	-3.367295830	-0.11611365
TOTAL	29	1		-1.319
Shannon-Weiner Diversity	/ Index:		H =	0.819

TABLE 12: SHANNON-WEINER INDEX CALCULATIONS FOR SITE 1

TABLE 13: SHANNON-WEINER INDEX CALCULATIONS FOR SITE 2

Common Name:	Column C	рі (С/Т)	In (pi)	pi*ln(pi)
Clam, Mussel	8	0.4	-0.916290732	-0.36651629
Cranefly Larva	1	0.05	-2.995732274	-0.14978661
Dragonfly Larva	1	0.05	-2.995732274	-0.14978661
Amphipod	2	0.1	-2.302585093	-0.23025851
Aquatic Worm	8	0.4	-0.916290732	-0.36651629
TOTAL	20	1		-1.263
Shannon-Weiner Diversit	y Index:		H =	0.785

Common Name:	Column C	рі (С/Т)	In (pi)	pi*ln(pi)
Mayfly Nymph	15	0.272727273	-1.299282984	-0.35434990
Amphipod	17	0.309090909	-1.174119841	-0.36290977
Aquatic Worm	20	0.363636364	-1.011600912	-0.36785488
Midge Larva	3	0.054545455	-2.908720897	-0.15865750
TOTAL	55	1		-1.244
Shannon-Weiner Diversit	y Index:		H =	0.897

TABLE 14: SHANNON-WEINER INDEX CALCULATIONS FOR SITE 4

For the indices calculated above, higher values of H represent more diverse communities of invertebrates. Sites 1 and 4 show similar diversity, however site 2 is once again characterized by lower diversity results.

3.4.4 Quality Assurance/Quality Control

All quality control and quality assurance methods listed in the methods portion of this report were followed by the students completing the invertebrate sampling. No unexpected errors occurred and even though invertebrate counts may seem low when compared to previous years, the students responsible are confident in their results.

4.0 Conclusions and Recommendations

Cottle Creek has been monitored for the last seven years by RMOT students and the database for water quality, hydrology, invertebrate samples, coliforms, and ALS lab results has been steadily growing. The water quality parameters analyzed in lab were mainly within the BC water quality guidelines (Appendix G). The ALS Laboratory results were also mostly within the BC water quality guidelines. This was interesting given the low invertebrate counts and low site assessment

ratings. Overall Cottle Creek seems to be in a healthy state; however, it can be argued that there is room for improvement.

We recommend that water quality, hydrology, invertebrate, coliforms, and ALS laboratory samples continue to be taken yearly as part of the RMOT 306 program. The continuous monitoring of Cottle Creek is important and helps preserve the sensitive ecosystem. We also recommend that the low invertebrate counts be investigated and that new monitoring efforts be conducted along North Cottle Creek downstream from Lost Lake. This system drains into Cottle Lake and into Cottle creek at site #2. Previous monitoring projects have done assessments there in the past and we believe that it would be beneficial to know what quality of water is coming into Cottle Lake.

We had very poor invertebrate counts, especially at the outflow of Cottle Lake. We recommend adding a fish component to this study as well. Fish play a significant role in stream classification and how streams are managed. There are sites that could be tested for the presence of fish, and we believe that it could be vital in how we manage Cottle Creek. We recommend that the City of Nanaimo increase the riparian buffer along Cottle Creek, especially in the lower reaches where it is surrounded by residential neighborhoods. Water quality indicated that Cottle Creek was quite healthy, however invertebrate analyses determined that Cottle Creek's health was between acceptable and poor at all four sites. We would like to see an improvement in the health status of Cottle Creek.

5.0 Acknowledgements

The students responsible for completing the 2019 environmental monitoring project on Cottle Creek would like to acknowledge those who helped with the production of this report. First and foremost, this project and report would not have been possible without the immense contribution and dedicated guidance of Dr. Erick Demers, Resource Management and Protection professor and chair of the VIU Biology Department. His wealth of knowledge in the classroom, his guidance during lab analyses and his preparatory work in the field were instrumental in the successful completion of this final report. VIU Resource Management and Protection technician Mike Lester was responsible for much of the behind the scenes work, helping to set up and take down the laboratory equipment and rushing the ALS samples to the post office.

6.0 References

- City of Nanaimo. 2019. Linley Valley Park Planning. Accessed October 19, 2019. <u>https://www.nanaimo.ca/your-government/projects/projects-detail/linley-valley-park-planning</u>
- Environmental Protection Agency (EPA). 2019. Protecting Water Quality from Urban Run Off. Accessed October 19, 2019. <u>https://www3.epa.gov/npdes/pubs/nps_urban-facts_final.pdf</u>
- Nanaimo Area and Land Trust (NALT). Linley Valley. 2017. Accessed October 18, 2019. https://www.nalt.bc.ca/1_4_contact.html
- Ministry of Environment and Climate Change Strategy. 2018. British Columbia approved water quality guidelines: aquatic life, wildlife & agriculture. BC Government. 37 p.
- Taccogna G and Munro K. 1995. The Streamkeepers Handbook: A Practical Guide to Stream and Wetland Care. Salmonid Enhancement Program, Dept. Fisheries and Oceans, Vancouver, BC.
- Vancouver Island University (VIU: J. Odynsky, K. Hall, and K. Zielke). 2018. Water Quality,
 Microbiology and Stream Invertebrate Assessment for Cottle Creek Nanaimo, BC (Fall 2018). Data Report.
- Vancouver Island University (VIU: A. Dignan, M. Boudreau, A. Zimich, and N. Hambrook).
 2017. Water Quality, Microbiology and Stream Invertebrate Assessment for Cottle Creek
 Nanaimo, BC (Fall 2017). Data Report.

Vancouver Island University (VIU: A. McDonald, C. Ninatti, J. Boutillier, and S. Megyesi). 2016. Water Quality, Microbiology and Stream Invertebrate Assessment for Cottle Creek Nanaimo, BC (Fall 2016). Data Report.

7.0 Appendix

Appendix A – Sampling Site Photos

Site #1 on Upper Cottle Creek West of Landalt Road looking upstream at metal grate.

Site #1 on Upper Cottle Creek West of Landalt Road facing downstream at culvert.

Site #2 at the outflow of Cottle Lake facing upstream towards foot bridge.

Site #2 at the outflow of Cottle Lake facing downstream from sampling site.

Site #3 facing downstream from the bridge over Nottingham Road.

Site #3 facing upstream under the bridge over Nottingham Road.

Site #4 facing upstream towards culvert under Stephenson Pint Road.

Site #4 facing downstream from the sampling sight towards Departure Bay.

Appendix B - ALS Lab Results & Methods

Sampling Event 1 Results:

250-753-3245

Nanamo Campus 900 Fifth Street Nanamo, BC V9R 555

Client Phone

Date Received Report Date Report Revision Version

31-Oct-2019 08:30 7-Nov-2019 12:49 FINAL

Certificate of Analysis Lab Work Order # Project P.D. #

L2374854

ENVIRONMENTAL MONITORING COURSE

Case Narrative/Commonts

amber Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authomy of the Laboratory.]

Job Reference Legal Site Description C of C Numbers

Results Summary L2374854

Job Reference Report To Date Received Report Date Report Version ENVIRONMENTAL MONITORING COUI Eric Demers, Vancouver Island Universit 31-Oct-2019 8:30 7-Nov-2019 12:49 1

			COTTLE CREEK	COTTLE CREEK	COTTLE CREEK
Client Sample ID			STATION 1	STATION 2	STATION 4
Date Sampled			30-Oct-2019	30-Oct-2019	30-Oct-2019
Time Sampled			13:00	13:00	13:00
ALS Sample ID			L2374854-4	L2374854-5	L2374854-6
Parameter	Lowest	Units	Water	Water	Water
	Detection Limit	Orinta	Water	TT DIGI	water
Physical Tests (Water)					
Conductivity	2.0	uS/cm	168	170	185
Hardness (as CaCO3)	0.50	mg/L	62.3	59.4	67.8
pH	0.10	pH	7.72	7.50	7.87
1					
Anions and Nutrients (Water)					
Ammonia, Total (as N)	0.0050	mg/L	0.0067	0.0189	<0.0050
Nitrate (as N)	0.0050	mg/L	0.278	0.0765	0.440
Nitrite (as N)	0.0010	mg/L	0.0018	0.0025	0.0014
Total Nitrogen	0.030	mg/L	0.525	0.433	0.685
Orthophosphate-Dissolved (as P)	0.0010	mg/L	<0.0010	<0.0010	< 0.0010
Phosphorus (P)-Total	0.0020	mg/L	0.0089	0.0122	0.0065
N:P	N/A	N/A	59.0	35.5	105.4
Total Metals (Water)					
Aluminum (Al)-Total	0.20	mg/L	<0.20	<0.20	<0.20
Antimony (Sb)-Total	0.20	mg/L	<0.20	<0.20	<0.20
Arsenic (As)-Total	0.20	mg/L	<0.20	<0.20	<0.20
Barium (Ba)-Total	0.010	mg/L	< 0.010	< 0.010	<0.010
Beryllium (Be)-Total	0.0050	mg/L	< 0.0050	<0.0050	<0.0050
Bismuth (Bi)-Total	0.20	mg/L	<0.20	<0.20	<0.20
Boron (B)-Total	0.10	mg/L	<0.10	<0.10	<0.10
Cadmium (Cd)-Total	0.010	mg/L	<0.010	<0.010	<0.010
Calcium (Ca)-Total	0.050	mg/L	16.8	16.2	18.6
Chromium (Cr)-Total	0.010	mg/L	<0.010	<0.010	< 0.010
Cobalt (Co)-Total	0.010	mg/L	<0.010	<0.010	< 0.010
Copper (Cu)-Total	0.010	mg/L	<0.010	<0.010	<0.010
Iron (Fe)-Total	0.030	mg/L	0.421	0.631	0.422
Lead (Pb)-Total	0.050	mg/L	<0.050	< 0.050	<0.050
Lithium (Li)-Total	0.010	mg/L	<0.010	<0.010	<0.010
Magnesium (Mg)-Total	0.10	mg/L	4.96	4.61	5.19
Manganese (Mn)-Total	0.0050	mg/L	0.0306	0.0280	0.0473
Molybdenum (Mo)-Total	0.030	mg/L	<0.030	< 0.030	< 0.030
Nickel (Ni)-Total	0.050	mg/L	<0.050	<0.050	<0.050
Phosphorus (P)-Total	0.30	mg/L	< 0.30	<0.30	<0.30
Potassium (K)-Total	2.0	mg/L	<2.0	<2.0	<2.0
Selenium (Se)-Total	0.20	mg/L	<0.20	<0.20	<0.20
Silicon (Si)-Total	0.10	mg/L	6.58	5.07	6.05
Silver (Ag)-Total	0.010	mg/L	<0.010	<0.010	<0.010
Sodium (Na)-Total	2.0	mg/L	11.0	11.3	12.2
Strontium (Sr)-Total	0.0050	mg/L	0.0693	0.0671	0.0690
Thallium (TI)-Total	0.20	mg/L	<0.20	<0.20	< 0.20
Tin (Sn)-Total	0.030	mg/L	< 0.030	< 0.030	<0.030
Titanium (Ti)-Total	0.010	mg/L	< 0.010	< 0.010	<0.010
Vanadium (V)-Total	0.030	mg/L	<0.030	< 0.030	< 0.030
Zinc (Zn)-Total	0.0050	mg/L	<0.0050	<0.0050	< 0.0050

ENVIRONMENTAL MONITORING COURSE
Eric Demers, Vancouver Island University
31-Oct-2019 8:30
7-Nov-2019 12:49
1

Parameter	ALS ID	Client Sample ID	ALS Test Code	Results	Detection Limit	Units	Qual	Date Sampled	Time Sampled	Prep Date	Analysis Date	QC Lot	QC Eval	Hold Time Eval	Matrix	Class
Physical Tests (Water)																
Conductivity	L2374854-4	COTTLE CREEK-STATION 1	EC-PCT-VA	168	2.0	uS/cm		30-Oct-19	13:00		31-Oct-19	1216853	1	*	Water	Physical Tests
Hardness (as CaCO3)	L2374854-4	COTTLE CREEK-STATION 1	HARDNESS-CALC-VA	62.3	0.50	mg/L	HTC	30-Oct-19	13:00		04-Nov-19		1	*	Water	Physical Tests
pH	L2374854-4	COTTLE CREEK-STATION 1	PH-PCT-VA	7.72	0.10	pH		30-Oct-19	13:00		31-Oct-19	1216853	1	*	Water	Physical Tests
Anions and Nutrients (Water)																
Ammonia, Total (as N)	L2374854-4	COTTLE CREEK-STATION 1	NH3-F-VA	0.0067	0.0050	mg/L		30-Oct-19	13:00		01-Nov-19	1217030	1	*	Water	Anions and Nutrients
Nitrate (as N)	L2374854-4	COTTLE CREEK-STATION 1	NO3-L-IC-N-VA	0.278	0.0050	mg/L		30-Oct-19	13:00		31-Oct-19	1216860	*	1	Water	Anions and Nutrients
Nitrite (as N)	L2374854-4	COTTLE CREEK-STATION 1	NO2-L-IC-N-VA	0.0018	0.0010	mg/L		30-Oct-19	13:00	Constant of	31-Oct-19	1216860	*	*	Water	Anions and Nutrients
Total Nitrogen	L2374854-4	COTTLE CREEK-STATION 1	N-T-COL-VA	0.525	0.030	mg/L		30-Oct-19	13:00	31-Oct-19	01-Nov-19	1217058	1	1	Water	Anions and Nutrients
Orthophosphate-Dissolved (as P)	L2374854-4	COTTLE CREEK-STATION 1	PO4-DO-COL-VA	< 0.0010	0.0010	mg/L		30-Oct-19	13:00		31-Oct-19	1216870	-	×.	Water	Anions and Nutrients
Phosphorus (P)-Total	L2374854-4	COTTLE CREEK-STATION 1	P-T-PRES-COL-VA	0.0089	0.0020	mg/L		30-Oct-19	13:00		01-Nov-19	1217031	*	*	Water	Anions and Nutrients
Total Metals (Water)														1.1		
Aluminum (Al)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.20	0.20	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Antimony (Sb)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.20	0.20	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Arsenic (As)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.20	0.20	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	*	1	Water	Total Metals
Barium (Ba)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Beryllium (Be)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.0050	0.0050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Bismuth (Bi)-Total	L2374854-4	COTTLE CREEK-STATION 1 COTTLE CREEK-STATION 1	MET-TOT-ICP-VA MET-TOT-ICP-VA	<0.20	0.20	mg/L		30-Oct-19	13:00		04-Nov-19 04-Nov-19	1217156	1	1	Water	Total Metals Total Metals
Boron (B)-Total Cadmium (Cd)-Total	L2374854-4 L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.10	0.010	mg/L mg/L		30-Oct-19 30-Oct-19	13:00		04-Nov-19 04-Nov-19	1217156	-	1	Water	Total Metals
Calcium (Ca)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	16.8	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Chromium (Cr)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	-	1	Water	Total Metals
Cobalt (Co)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Copper (Cu)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Iron (Fe)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	0.421	0.030	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Lead (Pb)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.050	0.050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Lithium (Li)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Magnesium (Mg)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	4.96	0.10	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Manganese (Mn)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	0.0306	0.0050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Molybdenum (Mo)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.030	0.030	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Nickel (Ni)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.050	0.050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Phosphorus (P)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	< 0.30	0.30	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Potassium (K)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<2.0	2.0	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Selenium (Se)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	< 0.20	0.20	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Silicon (SI)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	6.58	0.10	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Silver (Ag)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	*	*	Water	Total Metals
Sodium (Na)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	11.0	2.0	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Strontium (Sr)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	0.0693	0.0050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	*	*	Water	Total Metals
Thallium (TI)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.20	0.20	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Tin (Sn)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.030	0.030	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	-	1	Water	Total Metals
Titanium (Ti)-Total	L2374854-4	COTTLE CREEK-STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Vanadium (V)-Total Zinc (Zn)-Total	L2374854-4 L2374854-4	COTTLE CREEK-STATION 1 COTTLE CREEK-STATION 1	MET-TOT-ICP-VA MET-TOT-ICP-VA	<0.030 <0.0050	0.030	mg/L mg/L		30-Oct-19 30-Oct-19	13:00 13:00		04-Nov-19 04-Nov-19	1217156 1217156	1	1	Water Water	Total Metals Total Metals
Physical Tests (Water)																
Conductivity	L2374854-5	COTTLE CREEK-STATION 2	EC-PCT-VA	170	2.0	uS/cm		30-Oct-19	13:00		31-Oct-19	1216853	1	1	Water	Observed Trants
Hardness (as CaCO3)	L2374854-5	COTTLE CREEK-STATION 2	HARDNESS-CALC-VA	59.4	0.50	mg/L	inc	30-Oct-19 30-Oct-19	13:00		04-Nov-19	1210853	1	-	Water	Physical Tests Physical Tests
pH	L2374854-5	COTTLE CREEK-STATION 2	PH-PCT-VA	7.50	0.50	pH	ale	30-Oct-19	13:00		31-Oct-19	1216853	1	4	Water	Physical Tests
Anions and Nutrients (Water)																
Ammonia, Total (as N)	L2374854-5	COTTLE CREEK-STATION 2	NH3-F-VA	0.0189	0.0050	mall		30-Oct-19	13:00		01-Nov-19	1217030	1	1	Water	Anions and Nutrients
Nitrate (as N)	L2374854-5 L2374854-5	COTTLE CREEK-STATION 2 COTTLE CREEK-STATION 2	NO3-L-IC-N-VA	0.0765	0.0050	mg/L mg/L		30-Oct-19 30-Oct-19	13:00		31-Oct-19	121/030	1	1	Water	Anions and Nutrients
Nitrate (as N) Nitrite (as N)	L2374854-5	COTTLE CREEK-STATION 2	NO2-L-IC-N-VA	0.0025	0.0010	mg/L		30-Oct-19 30-Oct-19	13:00		31-Oct-19 31-Oct-19	1216860	2	2	Water	Anions and Nutrients
Total Nitrogen	L2374854-5	COTTLE CREEK-STATION 2	N-T-COL-VA	0.433	0.0010	mg/L		30-Oct-19	13:00	31-Oct-19	01-Nov-19	1210860	-	1	Water	Anions and Nutrients
Orthophosphate-Dissolved (as P)	L2374854-5	COTTLE CREEK-STATION 2	PO4-DO-COL-VA	<0.0010	0.0010	mg/L		30-Oct-19	13:00	S LODG 13	31-Oct-19	1216870	1	1	Water	Anions and Nutrients
Ormophosphate-Dissolved (as P)	123/4034-3	GOTTLE UNCEN-STATION 2	1 ON-DO-DOL-MA	-0.0010	0.0010	mg/L		30-001-19	13.00		31-00-19	12100/0		2	anaudr	Aniona and Nuclefills

Job Reference	ENVIRONMENTAL MONITORING COURSE
Report To	Eric Demers, Vancouver Island University
Date Received	31-Oct-2019 8:30
Report Date	7-Nov-2019 12:49
Report Version	1

Parameter	ALS ID	Client Sample ID	ALS Test Code	Results	Detection Limit	Units		Date Sampled	Time Sampled	Prep Date	Analysis Date	QC Lot	QC Eval	Hold Time Eval	Matrix	Class
Phosphorus (P)-Total	L2374854-5	COTTLE CREEK-STATION 2	P-T-PRES-COL-VA	0.0122	0.0020	mg/L	3	30-Oct-19	13:00		01-Nov-19	1217031	+	*	Water	Anions and Nutrient
Total Metals (Water)																
Aluminum (Al)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.20	0.20	ma/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Antimony (Sb)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.20	0.20	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Arsenic (As)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.20	0.20	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Banum (Ba)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Beryllium (Be)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.0050	0.0050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	+	Water	Total Metals
Bismuth (Bi)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.20	0.20	ma/L		30-Oct-19	13:00		04-Nov-19	1217156		1	Water	Total Metals
Boron (B)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.10	0.10	mg/L		30-Oct-19	13:00		D4-Nov-19	1217156	1	1	Water	Total Metals
Cadmium (Cd)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	~	Water	Total Metals
Calcium (Ca)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	16.2	0.050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Chromium (Cr)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Cobalt (Co)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Copper (Cu)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	2	1	Water	Total Metals
	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	0.631	0.030			30-Oct-19	13:00		04-Nov-19	1217156	-	1	Water	Total Metals
Iron (Fe)-Total	and the state of					mg/L										
Lead (Pb)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.050	0.050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Lithium (Li)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156			Water	Total Metals
Magnesium (Mg)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	4.61	0.10	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Manganese (Mn)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	0.0280	0.0050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	-	*	Water	Total Metals
Molybdenum (Mo)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.030	0.030	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	*	*	Water	Total Metals
Nickel (NI)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.050	0.050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Phosphorus (P)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	< 0.30	0.30	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Potassium (K)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<2.0	2.0	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Selenium (Se)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.20	0.20	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Silicon (Si)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	5.07	0.10	mg/L	3	30-Oct-19	13:00		D4-Nov-19	1217156	*	1	Water	Total Metals
Silver (Ag)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Sodium (Na)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	11.3	2.0	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Strontium (Sr)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	0.0671	0.0050	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Thailium (TI)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	< 0.20	0.20	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Tin (Sn)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.030	0.030	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Titanium (Ti)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Vanadium (V)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.030	0.030	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Zinc (Zn)-Total	L2374854-5	COTTLE CREEK-STATION 2	MET-TOT-ICP-VA	<0.0050	0.0050	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Physical Tests (Water)																
Conductivity	L2374854-6	COTTLE CREEK-STATION 4	EC-PCT-VA	185	2.0	uS/cm	3	30-Oct-19	13:00		31-Oct-19	1216853	1	1	Water	Physical Tests
Hardness (as CaCO3)	L2374854-6	COTTLE CREEK-STATION 4	HARDNESS-CALC-VA	67.8	0.50	mg/L	HTC 3	30-Oct-19	13:00		04-Nov-19		*	1	Water	Physical Tests
pH	L2374854-6	COTTLE CREEK-STATION 4	PH-PCT-VA	7.87	0.10	pH	3	30-Oct-19	13:00		31-Oct-19	1216853	1		Water	Physical Tests
Anions and Nutrients (Water)																
Ammonia, Total (as N)	L2374854-6	COTTLE CREEK-STATION 4	NH3-F-VA	< 0.0050	0.0050	mg/L		30-Oct-19	13:00		01-Nov-19	1217030	-	*	Water	Anions and Nutrien
Nitrate (as N)	L2374854-6	COTTLE CREEK-STATION 4	NO3-L-IC-N-VA	0.440	0.0050	mg/L		30-Oct-19	13:00		31-Oct-19	1216860	1	*	Water	Anions and Nutrien
Nitrite (as N)	L2374854-6	COTTLE CREEK-STATION 4	NO2-L-IC-N-VA	0.0014	0.0010	mg/L	3	30-Oct-19	13:00		31-Oct-19	1216860	*	1	Water	Anions and Nutrien
Total Nitrogen	L2374854-6	COTTLE CREEK-STATION 4	N-T-COL-VA	0.685	0.030	mg/L	3	30-Oct-19	13:00	31-Oct-19	01-Nov-19	1217058	1	*	Water	Anions and Nutrien
Orthophosphate-Dissolved (as P)	L2374854-6	COTTLE CREEK-STATION 4	PO4-DO-COL-VA	<0.0010	0.0010	mg/L	3	30-Oct-19	13:00		31-Oct-19	1216870	1	*	Water	Anions and Nutrien
Phosphorus (P)-Total	L2374854-6	COTTLE CREEK-STATION 4	P-T-PRES-COL-VA	0.0065	0.0020	mg/L	3	30-Oct-19	13:00		01-Nov-19	1217031	1	*	Water	Anions and Nutrien
Total Metals (Water)																
Aluminum (Al)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.20	0.20	mg/L		30-Oct-19	13:00		04-Nov-19	1217156		*	Water	Total Metals
Antimony (Sb)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.20	0.20	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	*	*	Water	Total Metals
Arsenic (As)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.20	0.20	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Barium (Ba)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Beryllium (Be)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.0050	0.0050	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	*	*	Water	Total Metals
Bismuth (Bi)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.20	0.20	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Boron (B)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.10	0.10	mg/L	3	30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.010	0.010	ma/L		30-Oct-19	13:00		04-Nov-19	1217156		5	Water	Total Metals

Job Reference Report To Date Received Report Date Report Version	ENVIRONMENTAL I Eric Demers, Vancou 31-Oct-2019 8:30 7-Nov-2019 12:49 1	MONITORING COURSE aver Island University														
Parameter	ALS ID	Client Sample ID	ALS Test Code	Results	Detection Limit	Units	Qual	Date Sampled	Time Sampled	Prep Date	Analysis Date	QC Lot	QC Eval	Hold Time Eval	Matrix	Class
Calcium (Ca)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	18.6	0.050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Chromium (Cr)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Cobalt (Co)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	*	1	Water	Total Metals
Copper (Cu)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	< 0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Iron (Fe)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	0.422	0.030	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Lead (Pb)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.050	0.050	mg/L		30-Oct-19	13:00		D4-Nov-19	1217156	1	1	Water	Total Metals
Lithium (Li)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Magnesium (Mg)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	5.19	0.10	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Manganese (Mn)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	0.0473	0.0050	mg/L		30-Oct-19	13:00		D4-Nov-19	1217156	*	1	Water	Total Metals
Molybdenum (Mo)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.030	0.030	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals
Nickel (Ni)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.050	0.050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Phosphorus (P)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.30	0.30	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Potassium (K)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<2.0	2.0	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Selenium (Se)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.20	0.20	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	+	*	Water	Total Metals
Silicon (SI)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	6.05	0.10	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Silver (Ag)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.010	0.010	mg/L		30-Oct-19	13:00		D4-Nov-19	1217156	*	1	Water	Total Metals
Sodium (Na)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	12.2	2.0	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	4	*	Water	Total Metals
Strontium (Sr)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	0.0690	0.0050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Thallium (TI)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.20	0.20	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	*	1	Water	Total Metals
Tin (Sn)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.030	0.030	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Titanium (Ti)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	< 0.010	0.010	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	*	Water	Total Metals
Vanadium (V)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.030	0.030	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	*	*	Water	Total Metals
Zinc (Zn)-Total	L2374854-6	COTTLE CREEK-STATION 4	MET-TOT-ICP-VA	<0.0050	0.0050	mg/L		30-Oct-19	13:00		04-Nov-19	1217156	1	1	Water	Total Metals

ALS Methods for Sampling Event 1:

Methodology L2374854

Job Reference Report To Date Received Report Date Report Version	ENVIRONMENTAL MONITORING COURSE Eric Demers, Vancouver Island University 31-Oct-2019 8:30 7-Nov-2019 12:49 1				
ALS Test Code	ALS Test Description	Lab Location	Matrix	Method Reference	Methodology Description
Physical Tests (Water)					
EC-PCT-VA	Conductivity (Automated)	Vancouver	Water	APHA 2510 Auto. Conduc.	This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.
HARDNESS-CALC-VA	Hardness	Vancouver	Water	APHA 23406	Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.
PH-PCT-VA	pH by Meter (Automated)	Vancouver	Water	APHA 4500-H pH Value	This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode
					It is recommended that this analysis be conducted in the field.
Anions and Nutrients	Water				
N-T-COL-VA	Total Nitrogen in water by Colour	Vancouver	Water	APHA4500-P(J)/NEMI9171/USGS03-4174	This analysis is carried out using procedures adapted from APHA Method 4500-P (J) "Persulphate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus" and National Environmental Methods Index - Nemi method 5735.
NH3-F-VA	Ammonia in Water by Fluorescence	Vancouver	Water	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC	
NO2-L-IC-N-VA NO3-L-IC-N-VA P-T-PRES-COL-VA	Nitrite in Water by IC (Low Level) Nitrate in Water by IC (Low Level) Total P in Water by Colour	Vancouver Vancouver Vancouver	Water Water Water	EPA 300.1 (mod) EPA 300.1 (mod) APHA 4500-P Phosphorus	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persubptate digestion of the sample. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis.
PO4-DO-COL-VA	Diss. Orthophosphate in Water by Colour	Vancouver	Water	APHA 4500-P Phosphorus	This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples. Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis.
Total Metals (Water)					
MET-TOT-ICP-VA	Total Metals in Water by ICPOES	Vancouver	Water	EPA SW-846 3005A/6010B	This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

ALS Results for Sampling Event 2:

Report To

Eric Demers, Vancouver Island University Nanaimo Campus 900 Fifth Street Nanaimo, BC V9R 5S5

Lab Work Order #

Legal Site Description C of C Numbers

Project P.O. # Job Reference

Client Phone 250-753-3245

Date Received Report Date Report Revision Version 21-Nov-2019 12:00 28-Nov-2019 16:40 1 FINAL

Certificate of Analysis

L2386179

ENVIRONMENTAL MONITORING COURSE

Case Narrative/Comments

amon Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

Results Summary L2386179

Job Reference ENVIRONMENTAL MONITORING COUI Report To Eric Demers, Vancouver Island Universit Date Received 21-Nov-2019 12:00 Report Date 28-Nov-2019 16:40 Report Version 1

COTTLE CREEK - COTTLE CREEK - COTTLE CREEK -Client Sample ID STATION 1 STATION 2 STATION 4 20-Nov-2019 20-Nov-2019 20-Nov-2019 Date Sampled Time Sampled 13:00 13:00 13:00 12386179-5 L2386179-6 ALS Sample ID L2386179-4 Lowest Water Parameter Water Water Units **Detection Limit** Physical Tests (Water) Conductivity 2.0 uS/cm 165 161 171 Hardness (as CaCO3) 0.50 mg/L 58 54.1 58.4 PH 0.10 pH 7.77 7.52 7.84 Anions and Nutrients (Water) Ammonia, Total (as N) 0.0050 mg/L 0.0095 0.0133 0.0070 Nitrate (as N) 0.0050 mg/L 0.564 0.202 0.448 0.0010 0.0020 0.0013 0.0013 Nitrite (as N) mg/L Total Nitrogen 0.030 0.824 0.703 mg/L 0.477 Orthophosphate-Dissolved (as P) 0.0010 0.0022 <0.0010 <0.0010 mg/L Phosphorus (P)-Total 0.0020 mg/L 0.0127 0.0122 0.0106 N:P N/A N/A 64.9 39.1 66.3 Total Metals (Water) Aluminum (Al)-Total 0.20 mg/L <0.20 <0.20 <0.20 Antimony (Sb)-Total 0.20 <0.20 <0.20 <0.20 mg/L Arsenic (As)-Total 0.20 mg/L <0.20 <0.20 <0.20 Barium (Ba)-Total 0.010 <0.010 <0.010 <0.010 mg/L Beryllium (Be)-Total 0.0050 mg/L <0.0050 <0.0050 <0.0050 Bismuth (Bi)-Total 0.20 <0.20 <0.20 <0.20 mg/L Boron (B)-Total 0.10 mg/L <0.10 <0.10 <0.10 0.010 <0.010 <0.010 <0.010 Cadmium (Cd)-Total mg/L Calcium (Ca)-Total 0.050 mg/L 15.7 14.8 16.0 Chromium (Cr)-Total 0.010 mg/L <0.010 <0.010 <0.010 0.010 mg/L <0.010 <0.010 <0.010 Cobalt (Co)-Total Copper (Cu)-Total 0.010 mg/L <0.010 <0.010 <0.010 Iron (Fe)-Total 0.722 0.686 0.030 0.504 mg/L Lead (Pb)-Total 0.050 mg/L <0.050 <0.050 <0.050 Lithium (Li)-Total 0.010 <0.010 <0.010 <0.010 mg/L Magnesium (Mg)-Total 0.10 mg/L 4.57 4.18 4.50 Manganese (Mn)-Total 0.0050 mg/L 0.0883 0.102 0.0254 Molybdenum (Mo)-Total < 0.030 <0.030 <0.030 0.030 mg/L Nickel (Ni)-Total 0.050 mg/L <0.050 <0.050 <0.050 Phosphorus (P)-Total 0.30 <0.30 <0.30 <0.30 mg/L Potassium (K)-Total <2.0 <2.0 <2.0 2.0 mg/L Selenium (Se)-Total 0.20 mg/L <0.20 <0.20 <0.20 Silicon (Si)-Total 0.10 mg/L 6.57 5.83 6.12 Silver (Ag)-Total 0.010 mg/L <0.010 <0.010 <0.010 Sodium (Na)-Total 2.0 mg/L 10.2 10.8 11.6 Strontium (Sr)-Total 0.0050 mg/L 0.0649 0.0604 0.0626 <0.20 <0.20 Thallium (TI)-Total 0.20 mg/L <0.20 Tin (Sn)-Total 0.030 mg/L <0.030 <0.030 <0.030 0.010 <0.010 Titanium (Ti)-Total <0.010 <0.010 mg/L Vanadium (V)-Total 0.030 <0.030 <0.030 <0.030 mg/L Zinc (Zn)-Total 0.0050 mg/L <0.0050 < 0.0050 <0.0050

Job Reference	ENVIRONMENTAL MONITORING COURSE
Report To	Eric Demers, Vancouver Island University
Date Received	21-Nov-2019 12:00
Report Date	28-Nov-2019 16:40
Report Version	1

Parameter	ALS ID	Client Sample ID	ALS Test Code	Results	Detection Limit	Units	Qual	Date Sampled	Time Sampled	Prep Date	Analysis Date	QC Lot	QC Eval	Hold Time Eval	Matrix	Class
Physical Tests (Water)																
Conductivity	L2386179-4	COTTLE CREEK - STATION 1	EC-PCT-VA	165	2.0	uS/cm		20-Nov-19	13:00		23-Nov-19	1231782	1	1	Water	Physical Tests
Hardness (as CaCO3)	L2386179-4	COTTLE CREEK - STATION 1	HARDNESS-CALC-VA	58.0	0.50	ma/L	HTC	20-Nov-19	13:00		26-Nov-19		1	1	Water	Physical Tests
н	L2386179-4	COTTLE CREEK - STATION 1	PH-PCT-VA	7.77	0.10	pH		20-Nov-19	13:00		23-Nov-19	1231782	*	1.1	Water	Physical Tests
nions and Nutrients (Water)																
mmonia, Total (as N)	L2386179-4	COTTLE CREEK - STATION 1	NH3-F-VA	0.0095	0.0050	mg/L		20-Nov-19	13:00		26-Nov-19	1232940	4	1	Water	Anions and Nutrie
trate (as N)	L2386179-4	COTTLE CREEK - STATION 1	NO3-L-IC-N-VA	0.564	0.0050	mg/L		20-Nov-19	13:00		23-Nov-19	1231775	1	1	Water	Anions and Nutrie
trite (as N)	L2386179-4	COTTLE CREEK - STATION 1	NO2-L-IC-N-VA	0.0020	0.0010	mg/L	HTD	20-Nov-19	13:00		26-Nov-19	1234856	1		Water	Anions and Nutrie
itrite (as N)	L2386179-4	COTTLE CREEK - STATION 1	NO2-L-IC-N-VA	0.0020	0.0010	mg/L	HTD	20-Nov-19	13:00		26-Nov-19	1231775			Water	Anions and Nutrie
otal Nitrogen	L2386179-4	COTTLE CREEK - STATION 1	N-T-COL-VA	0.824	0.030	mg/L		20-Nov-19	13:00	26-Nov-19	27-Nov-19	1232951	1	1	Water	Anions and Nutrie
Inthophosphate-Dissolved (as P)	L2386179-4	COTTLE CREEK - STATION 1	PO4-DO-COL-VA	0.0022	0.0010	mg/L		20-Nov-19	13:00		23-Nov-19	1231786	1	1	Water	Anions and Nutrie
hosphorus (P)-Total	L2386179-4	COTTLE CREEK - STATION 1	P-T-PRES-COL-VA	0.0127	0.0020	mg/L		20-Nov-19	13:00		26-Nov-19	1232942	1	*	Water	Anions and Nutrie
otal Metals (Water)																
luminum (Al)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	+	1	Water	Total Metals
ntimony (Sb)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
rsenic (As)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	4	Water	Total Metals
arium (Ba)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
eryflium (Be)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.0050	0.0050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	4	Water	Total Metals
ismuth (Bi)-Total	12386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	1	Water	Total Metals
oron (B)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.10	0.10	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	4	Water	Total Metals
admium (Cd)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
alcium (Ca)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	15.7	0.050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
hromium (Cr)-Total	12386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	*	Water	Total Metals
obait (Co)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	1	Water	Total Metals
opper (Cu)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
on (Fe)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	0.722	0.030	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	1	Water	Total Metals
ead (Pb)-Total	12386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.050	0.050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
ithium (Li)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	4	Water	Total Metals
lagnesium (Mg)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	4.57	0.10	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	*	Water	Total Metals
langanese (Mn)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	0.0883	0.0050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	+	1	Water	Total Metals
lolybdenum (Mo)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.030	0.030	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	*	Water	Total Metals
ickel (Ni)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.050	0.050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
hosphorus (P)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.30	0.30	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	*	Water	Total Metals
otassium (K)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<2.0	2.0	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	4	Water	Total Metals
elenium (Se)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	4	Water	Total Metals
licon (Si)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	6.57	0.10	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	*	*	Water	Total Metals
ilver (Ag)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
odium (Na)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	10.2	2.0	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	-	Water	Total Metals
trontium (Sr)-Total	12386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	0.0649	0.0050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1		Water	Total Metals
nallium (Ti)-Total	12386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	*	Water	Total Metals
n (Sn)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.030	0.030	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1		Water	Total Metals
itanium (Ti)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	*	Water	Total Metals
anadium (V)-Total	12386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.030	0.030	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1		Water	Total Metals
inc (Zn)-Total	L2386179-4	COTTLE CREEK - STATION 1	MET-TOT-ICP-VA	<0.0050	0.0050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1		Water	Total Metals
hysical Tests (Water)																
onductivity	L2386179-5	COTTLE CREEK - STATION 2	EC-PCT-VA	161	2.0	uS/cm		20-Nov-19	13:00		23-Nov-19	1231782	1	+	Water	Physical Tests
ardness (as CaCO3)	L2386179-5	COTTLE CREEK - STATION 2	HARDNESS-CALC-VA	54.1	0.50	mg/L	HTC	20-Nov-19	13:00		26-Nov-19		1	*	Water	Physical Tests
н	L2386179-5	COTTLE CREEK - STATION 2	PH-PCT-VA	7.52	0.10	pН		20-Nov-19	13:00		23-Nov-19	1231782	1		Water	Physical Tests
nions and Nutrients (Water)																
mmonia, Total (as N)	L2386179-5	COTTLE CREEK - STATION 2	NH3-F-VA	0.0133	0.0058	mg/L		20-Nov-19	13:00		26-Nov-19	1232940	1	× .	Water	Anions and Nutrie
litrate (as N)	L2386179-5	COTTLE CREEK - STATION 2	NO3-L-IC-N-VA	0.202	0.0050	mg/L		20-Nov-19	13:00		23-Nov-19	1231775	+	1	Water	Anions and Nutrie
itrite (as N)	L2386179-5	COTTLE CREEK - STATION 2	NO2-L-IC-N-VA	0.0013	0.0016	mg/L	HTD	20-Nov-19	13:00		26-Nov-19	1234856	1		Water	Anions and Nutrie
litrite (as N)	L2386179-5	COTTLE CREEK - STATION 2	NO2-L-IC-N-VA	0.0013	0.0010	mg/L	A comment	20-Nov-19	13:00		26-Nov-19	1231775			Water	Anions and Nutrie

Job Reference	ENVIRONMENTAL MONITORING COURSE
Report To	Eric Demers, Vancouver Island University
Date Received	21-Nov-2019 12:00
Report Date	28-Nov-2019 16:40
Report Version	1

Parameter	ALS ID	Cilent Sample ID	ALS Test Code	Results	Detection Limit	Units	Qual	Date Sampled	Time Sampled	Prep Date	Analysis Date	QC Lot	QC Eval	Hold Time Eval	Matrix	Class
Total Nitrogen	L2386179-5	COTTLE CREEK - STATION 2	N-T-COL-VA	0.477	0.030	mol		20-Nov-19	13:00	26-Nov-19	27-Nov-19	1232951	1		Water	Anions and Nutrien
Orthophosphate-Dissolved (as P)	L2386179-5	COTTLE CREEK - STATION 2	PO4-DO-COL-VA	<0.0010	0.0010	mg/L		20-Nov-19	13:00		23-Nov-19	1231786	1	1	Water	Anions and Nutrier
Phosphorus (P)-Total	L2386179-5	COTTLE CREEK - STATION 2	P-T-PRES-COL-VA	0.0122	0.0020	mg/L		20-Nov-19	13:00		25-Nov-19	1232942	1	*	Water	Anions and Nutrier
Total Metals (Water)																
Aluminum (Al)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	< 0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	*	Water	Total Metals
Antimony (Sb)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Arsenic (As)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Barlum (Ba)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231735	1	+	Water	Total Metals
Beryllium (Be)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.0050	0.0050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Bismuth (Bi)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Boron (B)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.10	0.10	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	1	Water	Total Metais
Cadmium (Cd)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Calcium (Ca)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	14.8	0.050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	1	Water	Total Metals
Chromium (Cr)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Cobalt (Co)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Copper (Cu)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metais
ron (Fe)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	0.686	0.030	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	1	Water	Total Metals
Lead (Pb)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.050	0.050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Lithium (Li)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	2	1	Water	Total Metals
Magnesium (Mg)-Total	12386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	4.18	0.10	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Manganese (Mn)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	0.102	0.0060	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.030	0.030			20-Nov-19	13:00		25-Nov-19	1231736	-		Water	Total Metals
Molybdenum (Mo)-Total						mg/L								2		
Nickel (Ni)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.050	0.050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736			Water	Total Metals
Phosphorus (P)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.30	0.30	mg/L		20-Nov-19	13:00		25-Nev-19	1231736	*	1	Water	Total Metals
Potassium (K)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<2.0	2.0	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Selenium (Se)-Totai	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	< 0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	× .	*	Water	Total Metals
Silicon (Si)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	5.83	0.10	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	*	Water	Total Metals
Silver (Ag)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Sodium (Na)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	10.8	2.0	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	*	*	Water	Total Metals
Strontium (Sr)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	0.0604	0.0050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	*	1	Water	Total Metals
Thallium (TI)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	*	1	Water	Total Metals
Tin (Sn)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.030	0.030	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	*	4	Water	Total Metals
Titanium (Ti)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	*	1	Water	Total Metals
Vanadium (V)-Totai	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.030	0.030	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	*	Water	Total Metals
Zinc (Zn)-Total	L2386179-5	COTTLE CREEK - STATION 2	MET-TOT-ICP-VA	<0.0050	0.0050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	*	1	Water	Total Metals
Physical Tests (Water)																
Conductivity	L2386179-6	COTTLE CREEK - STATION 4	EC-PCT-VA	171	2.0	uS/cm		20-Nov-19	13:00		23-Nov-19	1231782	1	1	Water	Physical Tests
Hardness (as CaCO3)	L2386179-6	COTTLE CREEK - STATION 4	HARDNESS-CALC-VA	58.4	0.50	mg/L	HTC	20-Nov-19	13:00		26-Nov-19		+	4	Water	Physical Tests
ρH	L2386179-6	COTTLE CREEK - STATION 4	PH-PCT-VA	7.84	0.10	pH		20-Nov-19	13:00		23-Nov-19	1231782	1	· • ·	Water	Physical Tests
Anions and Nutrients (Water)																
Ammonia, Total (as N)	L2386179-6	COTTLE CREEK - STATION 4	NH3-F-VA	0.0070	0.0050	mg/L		20-Nov-19	13:00		26-Nov-19	1232940	1	1	Water	Anions and Nutri
Nitrate (as N)	L2386179-6	COTTLE CREEK - STATION 4	NO3-L-IC-N-VA	0.448	0.0050	mg/L		20-Nov-19	13:00		23-Nov-19	1231775	*	1	Water	Anions and Nutri
Nitrite (as N)	L2386179-6	COTTLE CREEK - STATION 4	NO2-L-IC-N-VA	0.0013	0.0010	mg/L	HTD	20-Nov-19	13:00		26-Nov-19	1234856	1	4	Water	Anions and Nutri
Nitrite (as N)	L2386179-6	COTTLE CREEK - STATION 4	NO2-L-IC-N-VA	0.0013	0.0010	mg/L	HTD	20-Nov-19	13:00		26-Nov-19	1231775			Water	Anions and Nutri
Total Nitrogen	L2386179-6	COTTLE CREEK - STATION 4	N-T-COL-VA	0.703	0.030	mg/L		20-Nov-19	13:00	26-Nov-19	27-Nov-19	1232951	1	1	Water	Anions and Nutri
Orthophosphate-Dissolved (as P)	L2386179-6	COTTLE CREEK - STATION 4	PO4-DO-COL-VA	<0.0010	0.0010	mg/L		20-Nov-19	13:00		23-Nov-19	1231786	1	1	Water	Anions and Nutri
Phosphorus (P)-Total	L2386179-6	COTTLE CREEK - STATION 4	P-T-PRES-COL-VA	0.0106	0.0020	mg/L		20-Nov-19	13:00		26-Nov-19	1232942	1	1	Water	Anions and Nutri
Total Metals (Water)																
Aluminum (Al)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Antimony (Sb)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Arsenic (As)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Barlum (Ba)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19 25-Nov-19	1231736	1	2	Water	Total Metals
Beryllum (Be)-Total	L2386179-6	COTTLE CREEK - STATION 4 COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.0050	0.0050	mg/L mg/L		20-Nov-19 20-Nov-19	13:00		25-Nov-19 25-Nov-19	1231736	1	1	Water	Total Metals
Ser Amount (Del-Loral	F530011340	GOTTLE GREEK-STATION4	WE THUT HUP-YA	~0,0000	0.0000	11114/1		20*re0v+19	12:00		2:0+NOV+19	1231130			AA SUGL	LOGI METRIX

Job Reference Report To Date Received Report Date Report Version	the state of the s															
Parameter	ALS ID	Client Sample ID	ALS Test Code	Results	Detection Limit	Units	Qual	Date Sampled	Time Sampled	Prep Date	Analysis Date	QC Lot	QC Eval	Hold Time Eval	Matrix	Class
Bismuth (Bi)-Total	12386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Boron (B)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.10	0.10	ma/L		20-Nov-19	13:00		25-Nov-19	1231736	4	1	Water	Total Metals
admium (Cd)-Total	L2386179-5	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1		Water	Total Metals
alcium (Ca)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	16.0	0.050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
hromium (Cr)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
obalt (Co)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	*	Water	Total Metals
opper (Cu)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
on (Fe)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	0.504	0.030	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	+	1	Water	Total Metals
ad (Pb)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.050	0.050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
thium (Li)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13.00		25-Nov-19	1231736	*	*	Water	Total Metals
lagnesium (Mg)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	4.50	0.10	mg/L		20-Nov-19	13:00		25-Nov-18	1231736	1	1	Water	Total Metals
langanese (Mn)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	0.0254	0.0050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	*	-	Water	Total Metals
lolybdenum (Mo)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.030	0.030	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	*	Water	Total Metals
ickel (Ni)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.050	0.050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	*	1	Water	Total Metals
hosphorus (P)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.30	0.30	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	*	*	Water	Total Metals
otassium (K)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<2.0	2.0	mg/L		20-Nov-19	13:00		25-Nov-19	1231735	1	1	Water	Total Metals
elenium (Se)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	*	*	Water	Total Metals
ficon (Si)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	6.12	0.10	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	*	+	Water	Total Metals
ilver (Ag)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	1	Water	Total Metals
odium (Na)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	11.6	2.0	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	*	1	Water	Total Metals
trontium (Sr)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	0.0625	0.0050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	1	Water	Total Metals
nallium (TI)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.20	0.20	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	+	Water	Total Metals
in (Sn)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.030	0.030	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	4	1	Water	Total Metals
itanium (Ti)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.010	0.010	mg/L		20-Nov-19	13.00		25-Nov-19	1231736	1	1	Water	Total Metals
anadium (V)-Totai	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.030	0.030	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals
Inc (Zn)-Total	L2386179-6	COTTLE CREEK - STATION 4	MET-TOT-ICP-VA	<0.0050	0.0050	mg/L		20-Nov-19	13:00		25-Nov-19	1231736	1	1	Water	Total Metals

ALS Methods for Second Sampling Event:

Methodology L2386179

Job Reference Report To Date Received Report Date Report Version	ENVIRONMENTAL MONITORING COURSE Eric Demens, Vancouver Island University 21-Nov-2019 12:00 28-Nov-2019 16:40 1				
ALS Test Code	ALS Test Description	Lab Location	Matrix	Method Reference	Methodology Description
Physical Tests (Water)					
EC-PCT-VA	Conductivity (Automated)	Vancouver	Water	APHA 2510 Auto. Conduc.	This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.
HARDNESS-CALC-VA	Hardness.	Vancouver	Water	APHA 2340B	Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation.
PH-PCT-VA	pH by Meter (Automated)	Vancouver	Water	APHA 4500-H pH Value	This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode
					It is recommended that this analysis be conducted in the field.
Anions and Nutrients	(Water)				
N-T-COL-VA	Total Nitrogen in water by Colour	Vancouver	Water	APHA4500-P(J)/NEMI9171/USGS03-4174	This analysis is carried out using procedures adapted from APHA Method 4500-P (J) "Persuiphate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus" and National Environmental Methods Index - Nemi method 5735.
NH3-F-VA	Ammonia in Water by Fluorescence	Vancouver	Water	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC	
NO2-L-IC-N-VA	Nitrite in Water by IC (Low Level)	Vancouver	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
NO3-L-IC-N-VA P-T-PRES-COL-VA	Nitrate in Water by IC (Low Level) Total P in Water by Colour	Vancouver	Water Water	EPA 300.1 (mod) APHA 4500-P Phosphorus	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples.
					Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis.
PO4-DO-COL-VA	Diss. Orthophosphate in Water by Colour	Vancouver	Water	APHA 4500-P Phosphorus	This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphous". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter.
					Samples with very high dissolved solids (i.e. seawaters, brackish waters) may produce a negative bias by this method. Alternate methods are available for these types of samples.
					Arsenic (5+), at elevated levels, is a positive interference on colourimetric phosphate analysis.
Total Metals (Water)					
MET-TOT-ICP-VA	Total Metals in Water by ICPOES	Vancouver	Water	EPA SW-846 3005A/60108	This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Appendix C – ALS Lab Chain of Custody Confirmations

Chain of Custody from First Sampling Event:

A	LS	Sa	mple Receip	ot Confirm	ation			Page 1 of 3 7-19 21:57 (MT
Report D	istribution:				Invoice I	Distribu	ution:	
	Company Name:	Vancouver Island	University		Acct Name:	Vancouv	er Island University	
	Contact:	Eric Demers			Contact	Account	s Payable	
	Address:	to the second second parts			Address	Nanaimo	Campus, 900 Fifth	Street
	24	Nanaimo, BC, V9F	R 5S5			Nanaimo	. BC. V9R 555	
		250-753-3245 250-740-6482			Phone:	-		
	Email:				Fax:	2		
	EDD Email:	eric.demers@viu.c	a		Invoice Email:		are Buin co	
		2	and a second		Project #:	N/A	Serend Augurers	
	Distribution:	Hard Copy: N	Email: Y Fax: (N EDD: N	Account #:			
Workord	Site Description: Quote #: er Summary Lab Work Order #: completion date:	N/A L2374854	-	Acc	count Manager	ENVIRO	NMENTAL MONITO	
	eceived at ALS in are sample integri		samples submitted. F	Please see Sample	Integrity Obser	below,	ow for more details	
Lab	Client		Date	Date	Sample	Priority	Sample	
Sample ID	Sample ID		Sampled	Received	Due Date	Flag	Туре	
2374854-1	BECK CREEK-S	TATION 1	30-OCT-19 09:00	31-OCT-19 08:30	07-NOV-19		Water	
EEGI HOUH-1	BECK CREEK-S	TATION 2	30-OCT-19 09:00	31-OCT-19 08:30	07-NOV-19		Water	
		and the second se			AT LUCKE HE		Water	
2374854-2	BECK CREEK-S	TATION 3	30-OCT-19 09:00	31-OCT-19 08:30	07-NOV-19			
L2374854-2 L2374854-3	BECK CREEK-S COTTLE CREEK		the second rest are second	31-OCT-19 08:30 31-OCT-19 08:30			Water	
L2374854-2 L2374854-3 L2374854-4 L2374854-5	COTTLE CREEK	-STATION 1 -STATION 2	30-OCT-19 09:00 30-OCT-19 09:00	31-OCT-19 08:30 31-OCT-19 08:30	07-NOV-19 07-NOV-19		Water	
L2374854-2 L2374854-3 L2374854-4 L2374854-5 L2374854-6	COTTLE CREEK	-STATION 1 -STATION 2	30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00	31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30	07-NOV-19 07-NOV-19 07-NOV-19		Water Water	
L2374854-2 L2374854-3 L2374854-4 L2374854-5 L2374854-6 L2374854-7	COTTLE CREEK COTTLE CREEK COTTLE CREEK ENGLISHMAN R	-STATION 1 -STATION 2 -STATION 4 IVER -STATION1	30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00	31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30	07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19		Water Water Water	
L2374854-2 L2374854-3 L2374854-4 L2374854-4 L2374854-5 L2374854-6 L2374854-7 L2374854-8	COTTLE CREEK COTTLE CREEK COTTLE CREEK ENGLISHMAN R ENGLISHMAN R	-STATION 1 -STATION 2 -STATION 4 IVER -STATION1 IVER -STATION2	30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00	31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30	07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19		Water Water Water Water	
L2374854-2 L2374854-3 L2374854-4 L2374854-5 L2374854-6 L2374854-6 L2374854-7 L2374854-8 L2374854-9	COTTLE CREEK COTTLE CREEK COTTLE CREEK ENGLISHMAN R ENGLISHMAN R ENGLISHMAN R	-STATION 1 -STATION 2 -STATION 4 IVER -STATION1 IVER -STATION2 IVER -STATION4	30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00	31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30	07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19		Water Water Water Water Water	
L2374854-2 L2374854-3 L2374854-4 L2374854-5 L2374854-6 L2374854-6 L2374854-7 L2374854-8 L2374854-9 L2374854-10	COTTLE CREEK COTTLE CREEK COTTLE CREEK ENGLISHMAN R ENGLISHMAN R MILLSTONE RIV	-STATION 1 -STATION 2 -STATION 4 IVER -STATION1 IVER -STATION2 IVER -STATION4 ER - STATION 1	30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00	31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30	07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19		Water Water Water Water Water Water	
L2374854-2 L2374854-3 L2374854-4 L2374854-6 L2374854-6 L2374854-7 L2374854-8 L2374854-9 L2374854-10 L2374854-11	COTTLE CREEK COTTLE CREEK COTTLE CREEK ENGLISHMAN R ENGLISHMAN R ENGLISHMAN R MILLSTONE RIV MILLSTONE RIV	-STATION 1 -STATION 2 -STATION 4 IVER -STATION1 IVER -STATION4 ER - STATION 1 ER - STATION 2	30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00	31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30	07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19		Water Water Water Water Water Water Water	
L2374854-2 L2374854-3 L2374854-4 L2374854-5 L2374854-5 L2374854-6 L2374854-7 L2374854-7 L2374854-8 L2374854-10 L2374854-12	COTTLE CREEK COTTLE CREEK ENGLISHMAN R ENGLISHMAN R ENGLISHMAN R MILLSTONE RIV MILLSTONE RIV	-STATION 1 -STATION 2 -STATION 4 IVER -STATION1 IVER -STATION2 IVER -STATION 1 ER - STATION 1 ER - STATION 2 ER - STATION 4	30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00	31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30	07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19		Water Water Water Water Water Water Water Water Water	
L2374854-2 L2374854-3 L2374854-5 L2374854-5 L2374854-6 L2374854-7 L2374854-7 L2374854-10 L2374854-10 L2374854-12 L2374854-12 L2374854-13	COTTLE CREEK COTTLE CREEK COTTLE CREEK ENGLISHMAN R ENGLISHMAN R MILLSTONE RIV MILLSTONE RIV MILLSTONE RIV MILLSTONE RIV RICHARDS CRE	-STATION 1 -STATION 2 -STATION 4 IVER -STATION2 IVER -STATION2 IVER -STATION4 ER - STATION 1 ER - STATION 2 ER - STATION 4 EK - STATION 1	30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00	31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30	07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19		Water Water Water Water Water Water Water Water Water	
L2374854-2 L2374854-3 L2374854-4 L2374854-5 L2374854-5 L2374854-7 L2374854-7 L2374854-7 L2374854-10 L2374854-10 L2374854-12	COTTLE CREEK COTTLE CREEK ENGLISHMAN R ENGLISHMAN R ENGLISHMAN R MILLSTONE RIV MILLSTONE RIV	-STATION 1 -STATION 2 -STATION 4 IVER -STATION2 IVER -STATION2 IVER -STATION 1 ER - STATION 1 ER - STATION 2 ER - STATION 4 EK - STATION 1 EK- STATION 2	30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00 30-OCT-19 09:00	31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30 31-OCT-19 08:30	07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19 07-NOV-19		Water Water Water Water Water Water Water Water Water	

100000 8081 Lougheed Highway, Burnaby BC, Canada VSA 1W9 / Highligh +1 604 253 4188 141 +1 604 253 6700

www.alsglobal.com

Arrest C

HIGHT SOLUTIONS ---------

Analysis Requested :	Anions by Ion Chromatography	Hardness	Total Metals in Water by (CPOES	Total Nitrogen in water by Colour	Ammonia in Water by Fluorescence	Total P in Water by Colour	Conductivity [Automated]	pH by Meter [Automated]	Diss. Orthophosphate in Water by Colour	Sample Handling and Disposal Fee
BECK CREEK- STATION 1	1	1	1	1	1	1	1	1	1	1
BECK CREEK- STATION 2	1	1	1	1	1	1	1	1	1	1
BECK CREEK- STATION 3	1	1	1	1	1	4	1	1	1	1
COTTLE CREEK- STATION 1	1	1	~	1	1	1	1	1	4	~
COTTLE CREEK- STATION 2	1	4	1	4	1	1	1	1	1	1
COTTLE CREEK- STATION 4	1	1	1	1	1	1	1	1	*	1
ENGLISHMAN RIVER - STATION1	1	1	1	4	1	4	1	1	1	1
ENGLISHMAN RIVER - STATION2	1	1	*	1	1	1	1	1	1	1
ENGLISHMAN RIVER - STATION4	1	1	4	1	1	1	1	1	1	*
MILLSTONE RIVER - STATION 1	1	1	1	1	4	1	1	4	1	1
MILLSTONE RIVER - STATION 2	1	1	1	1	1	1	1	1	1	1
MILLSTONE RIVER - STATION 4	1	1	1	1	1	1	1	1	1	1
RICHARDS CREEK- STATION 1	1	1	4	1	1	1	1	1	1	1
RICHARDS CREEK- STATION 2	1	1	1	1	1	1	1	1	1	1
RICHARDS CREEK- STATION 3	1	1	1	1	1	1	1	1	*	1

Page 2 of 3 31-OCT-19 21:57 (MT)

Analysis Requested	Lab Sample ID	Recommended Hold Time	Date Sampled	Date Received
pH by Meter (Automated)	L2374854-1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15	0.25 hours	30-OCT-19	31-OCT-19

Sample Integrity Observations: Observation Details

Page 3 of 3 31-OCT-19 21:57 (MT)

Sample Integrity Observations:

Discrepancy between CofC and label	Nutrition and metal bottles for sample Richards Creek - station 1, Richards Creek - station 2 and Richards Creek - station 3 are labelled as both total and dissolved. Because only total analysis is requested, the bottles will be labelled as such. If other analysis is required, please contact your AM.
Extra samples/bottles received but not listed on COC	Received nutrition and metal bottles for sample Englishman River - Station 3. These bottles will be labelled as sample Englishman River - Station 2 by process of alimination.
Samples listed on COC but not received	Did not receive nutrition and metal bottles for sample Englishman River - Station 2.

Sample Disposal Information:

Where possible, ALS will store samples for the following durations, measured from data of sample submission: 45 days for Soil and Water samples, 6 months for Tissue/Biota samples: 14 days for air samples collected on re-usable media; and 3 days for water samples submitted for microbiological testing. Longer storage times are available upon request.

For information about ALS accreditations and certifications please contact your Account Manager or visit our webpage at www.alsglobal.com (see Canada downloads).

ALS Group strives to deliver on-time results to our clients at all times. However, there are times when due to capacity issues or other unforeseen circumstances we are unable to meet our expected turnaround times. The information above is related to a recent workorder you have submitted to our laboratory. In the event that you have an inquiry, please refer to the Lab Work Order # when calling your Account Manager.

ALS Group appreciates your business. Thank you for the opportunity to work with you.

A		Chain of Cust Re	ody (COC) quest Form									co	C Nu	mber. P:	17 ·	- 1	of				
(ALS)	Environmental	Canada Tol	I Free: 1 800 6	668 9878	and and a second se	L2374854	4-CC	FC				ŀ.			.90		01				
Description of the	www.alsglobal.com		<u></u>		L					.		-									
Report To	Contact and company name below will ap Vancouver Island University	spear on the linal report	Colort Bosert	Report Format																es may appl	(iy)
Company:	Eric Demers	100	Contraction and a second	Format: PDF			Stan	-					DIOX		_	_			business		
Contact:	250-753-3245		1.000	(QC) Report with F		62.525	¥1			egular		2	sign i	1.000					- Regula	r]	
Phone:				Its to Criteria on Report - tion: 🕢 EMAIL	MAIL '		PRIO			-50%]			a numerica a	3 8	Isines	is day	- 010	X [E -	- 100%]		0
	Company address below will appear on the f	inai report	Select Distribut				é	-		100%]		_		-							
Street:	900 Fifth Street			eric.demers@viu.	ca		_		_		red for all			1					y hh:mm	6	
City/Province:	Nanaimo, BC		Email 2				For ter	sts that	can not	be perfe	rmed acco	rding to th		_	_	_	i be conta	acted,			
Postal Code:	V9R 5S5		Email 3				-								s Requ						_
Invoice To	Same as Report To YES			Invoice Di			S	L	-		Filtered (F), Presen	ved (P)	or Filter	ed and I	Preserv	red (F/P)	below			1
	Copy of Invoice with Report YES	ON D	Select Invoice	Distribution: 🔽 EM		FAX	LE I		P	Ρ										PL	the last
Company:			Email 1 or Fax	eric.demers@viu.	са	Waters :	1Z	÷ 1												ΙŸ	Ě
Contact:			Email 2		-		٦₹									(5
	Project Information		0	il and Gas Require		t use)	CONTAIN									1 1				Z	pcla
ALS Account #			AFE/Cost Center:		PO#		lð													0	Sp
Job #:	Environmental Monitoring Course		Major/Minor Code:		Routing Code		0	ŝ								11				S	see
PO / AFE:			Requisitioner				Ъ	E								1				Ш	8
LSD:	20.004-05549 (7)		Location:		52000 - 535			AME		10											AZA
ALS Lab Wor	rk Order # (lab use only):		ALS Contact:	Amber Springer	Sampler:	Students	NUMBER	GENERAL PARAMETERS	NUTRIENTS	METALS										AMP	SUSPECTED HAZARD (see Special Instructions)
ALS Sample #	Sample Identification	n and/or Coordinates		Date	Time	Sample Type	15	E	IRI	FOTAL						1					SPE
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hh:mm)	Cample 19pe	Z	GE	R	T0		1							_	S	SUS
2	Beck Creek - Station 1			30-Oct-19	9:00	Water	3	R	R	R											
13	Beck Creek - Station 2			30-Oct-19	9:00	Water	3	R	R	R										1	
20	Beck Creek - Station 3			30-Oct-19	9:00	Water	3	R	R	R		-	1					-		+	+
4 <u></u>	Cottle Creek - Station 1			30-Oct-19	13:00	Water	.3	R	R	R		+	+	1			-	+	+		+
	Cottle Creek - Station 2			30-Oct-19	13:00	Water	3	R	R	R		+		-				+	+	1	+
	Cottle Creek - Station 4			30-Oct-19	13:00	Water	3	R	R	R			+		$ \rightarrow $		-	+	+		+
	Englishman River - Station 1	· · · · · · · · · · · · · · · · · · ·		30-Oct-19	9:00	Water	3	R	R	R		+	+	+	\vdash	\vdash	-	+	+	+	+
	Englishman River - Station 2			30-Oct-19	9700	Water	3	R	R	R		+-	+	-		\vdash	-	+	+	+	+
5	Englishman River - Station 4			30-Oct-19	9:00	Water	3	R	R	R			+	-		\vdash		-+	+		+
	Millstone River - Station 1	· · · · · · · · · · · · · · · · · · ·		29-Oct-19	13:00	Water	3	R	R	R		+-	-					-+		1	+
	Millstone River - Station 2			29-Oct-19	13:00	Water	3	R	R	R		+	-	+		\vdash	-+	+	+	+	+
	Millstone River - Station 4			29-Oct-19	13:00	Water	3	R	R	R		+-	+	-		+	+	+	+	+	-1-
		Special Instructions / Special	pecify Criteria to				-	1		1	SAMP	E CON	DITIO	DN AS	RECE	EIVED	(lab u	se on	ly)		<u> </u>
Drinking	Water (DW) Samples ¹ (client use)			ctronic COC only)	-		Froz	en		ĺ٦		SIF	Obser	vation	IS	Yes			No	i	
	en from a Regulated DW System?	0.0.00		(6) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8		1	Ice P	acks	D'	Ice C	ubes [Cus	tody s	eal int	act	Yes		1	No	i.	
T YE	es 🔲 no			т.,			Cooli	ing Ini	tiated						1						
Are samples for	human consumption/ use?	Detection limits: ammon				orthophosphate	-1	IN		COOLE	r tempe	RATURE	S*C		1	FI	NAL CO	OLER	TEMPERA	TURES *C	
	es 🗌 NO	[MDL = 0.001 mg/L], tot	al phosphorus [I	MDL = 0.002 mg/L],	total nitrogen.		DX:	5	19	3						3		-			
_	SHIPMENT RELEASE (client us		5 B	INITIAL SHIPMEN	T RECEPTION	(lab use only)		1		-		FINA	SHIP	MEN	TREC	EPTIC	ON (lab	o use	only)		
Released by: E	ric Demers Date: 30 Oct. 20	19, 17:00 Time:	Received by:	1	Day + 2	1/19	K	20	Rec	eived	by:			Date	£.	Cond.		1	25.5	Time:	
	PAGE FOR ALS LOCATIONS AND SAMPLI			8.8	11/4-0	1/1-1			TCO			20		1	1000220					SPI	

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY/COPY YELLOW CLIENT COPY
Failure to complete all portions of this form may delay enalysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.
1. If any water samples are taken from a Regulated Drinking Water (OW) System, please submit using an Authorized DW COC form.

YES □ NO Are samples for human consumption/ use? Detection limits: ammonia [MDL = 0.005 mg/L], nitrite [MDL = 0.001 mg/L], orthophosphata NIIITAL COOLER TEMPERATURES *> NIIIITAL COOLER TEMPERATURES *> NIIIIITAL COOLER TEMPERATURES *> NIIIIITAL COOLER TEMPERATURES *> NIIIIIII COOLER TEMPERATURES *> NIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		www.alsglobal.com			1							1									
Constant Incomposed Danky Control (CO) Report with Report. Danky Control (CO) Re	Report To	Contact and company name below will appear on the final repo	ort	Report Forma	t / Distribution			Select	Servi	ice Leve	Below	- Conta	act you	r AM to	confirm	n all Eð	P TATS	(surch	arges n	nay appl	y)
Bit Decay (20/275-326) Compare Names to Kon trans to Construe Nagers (20 classes) Statustical Statust	Company:	Vancouver Island University	Select Report	Format: 🔽 PDF	EXCEL E	DD (DIGITAL)	Stan	dard T/	AT is	s 15 bu	siness	days. I	DTOX	analysi	is stan	idard 1	TAT is I	5 busin	iess da	ays	
Company addets block will appear on the fruit roport Extend: PAX PAX </td <td>Contact:</td> <td>Eric Demers</td> <td>Quality Control</td> <td>(QC) Report with F</td> <td>Report 🗹 YES</td> <td>NO NO</td> <td>2</td> <td>15 day</td> <td>[Re</td> <td>gular]</td> <td>0</td> <td>2 1</td> <td>[sviet]</td> <td>5 Bus</td> <td>iness</td> <td>day - (</td> <td>DTOX [</td> <td>R - Reg</td> <td>jular]</td> <td></td> <td></td>	Contact:	Eric Demers	Quality Control	(QC) Report with F	Report 🗹 YES	NO NO	2	15 day	[Re	gular]	0	2 1	[sviet]	5 Bus	iness	day - (DTOX [R - Reg	jular]		
Bittet: Email 1 or Fax. etic demens@viu.ca Oute and Time Request for at Ear Tats downom-ry: Nomm ChyPhonices: Email 2 Free Networks and the Request for at Ear Tats downom-ry: Nomm ChyPhonices: Free Networks and the Request for at Ear Tats downom-ry: Nomm ChyPhonices: Free Networks and the Request for at Ear Tats downom-ry: Nomm ChyPhonices: Free Networks and the Request for at Ear Tats downom-ry: Nomm ChyPhonices: Free Networks and the Request for at Ear Tats downom-ry: Nomm Company: Email 1 or Fax: etic demens@viu.ca mode of Precise (Precise Content) Free Network (Precise Content) Company: Email 1 or Fax: etic demens@viu.ca Dil and Gas Requestion Free Network (Precise Content) Free Network (Precise Content) Acade Cont # Conter (Precise Content) Email 2 Dil and Gas Requestion Free Network (Precise Content) Free Network (Precise Content) <t< td=""><td>Phone: '</td><td>250-753-3245</td><td></td><td></td><td></td><td></td><td>RIOR</td><td>1 .</td><td></td><td></td><td></td><td></td><td></td><td>3 Bus</td><td>iness</td><td>day - C</td><td>DTOX [</td><td>E - 100'</td><td>%]</td><td></td><td></td></t<>	Phone: '	250-753-3245					RIOR	1 .						3 Bus	iness	day - C	DTOX [E - 100'	%]		
Chyperportion: Novaline, BC Enail 3 Period Code: VIR 555 Enail 3 Copy of Invoice with Report If 10 Invoice Distribution If xx Novaline, Bit 2 Second Proceedings in the control of the second on the second, provide and the second on the second, provide and the second of the second on the second (PP) lock Second Proceedings in the control of the second on the second (PP) lock Second Proceedings in the second on the second (PP) lock Second Proceedings in the second on the second (PP) lock Second Proceedings in the second on the second (PP) lock Second Proceedings in the second on the second (PP) lock Second Proceedings in the second Procedings in the s		Company address below will appear on the final report	Select Distribu	tion: 🗹 EMAIL		FAX	id sing)	5 day	[E-1	00%]			ang)								
Partial Code: Viry R 565 Email 3 Analysis Request Involce Distribution Corputy (Minoke with Report) 0:0 Select Involce Distribution	Street:	900 Fifth Street	Email 1 or Fax	eric demers@viu.	.ca		0	Date and	Time	Require	d for all	E&P TAT	5:			dr	d-mmm-t	yy hh:	mm		
Invoice To Same as Report To Invoice Distribution Invoice Dist	City/Province:	Nanaimo, BC	Email 2				For tes	sts that car	n not	be perform	ned accor	rding to th	e service	e leve! sel	ected, you	u will be	contacted	Ł			
Copy of Invoice with Report INS NO Select Invoice Distribution: Invoice MAL FAX Company: Email 1 or Fax end demeng@vic.ea Email 1 or Fax end demeng@vic.ea Invoice	Postal Code:	V9R 5S5	Email 3		1								Ana	alysis F	leques	st					
Project Information OII and Gas Required Finds (client use) Formation No ALS Account #/ Quote #/ Auguster Center PO# Routing Code: PO#	Invoice To	Same as Report To I YES NO		Invoice Di	stribution		6		Ir	ndicate Fi	Itered (F), Presen	ed (P) o	or Filtered	and Pre	served	(F/P) bek	w		D	
Project Information OII and Gas Required Finds (client use) Formation No ALS Account #/ Quote #/ Auguster Center PO# Routing Code: PO#	10.47	Copy of Invoice with Report YES IND	Select Invoice	Distribution: 🔽 EM		FAX.	Ĩ	P	,	P		1								1	
Project Information OII and Gas Required Field Science use) Formation Regulation of the second science use) Formation Regulation of the second science use) Formation Second science use Formation Second science use Formation Second science use Formation Formation<	Company:		Email 1 or Fax	eric.demers@viu.	ca .		1₩													ō	ļ
Project Information Oli and Gas Required Field Scient use) Formation No No<	Contact:		Email 2				1						1							I	
PO / AFE: Requisitioner: Location: P ALS Contact: Amber Springer Sample: Students P	10	Project Information	. 0	l and Gas Require	d Fields (clien	t use)	1E													z	
PO / AFE: Requisitioner: Location: P ALS Contact: Amber Springer Sample: Students P	ALS Account #	ccount # / Quote #: AFE/C Environmental Monitoring Course Major FE: Requised Loca Loca Lab Work Order # (lab use only): ALS ample # Sample Identification and/or Coordinates (This description will appear on the report) Richards Creek - Station 1 Richards Creek - Station 2 Richards Creek - Station 3 Prinking Water (DW) Samples ¹ (client use) Special Instructions / Specify mples taken from a Regulated DW System? Special Instructions / Specify	AFE/Cost Center:		PO#		18													ō	
O/ AFE Requestioner Uccation:	Job #:	Environmental Monitoring Course	Major/Minor Code:		Routing Code	:		0													
Richards Creek - Station 1 28-Oct-19 13:00 Water 3 R R Image: Station 2 Image: Station 3 Image: Station 3 <t< td=""><td>PO/AFE:</td><td></td><td>Requisitioner</td><td></td><td></td><td></td><td>14</td><td>E</td><td></td><td></td><td></td><td>- E</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ш</td><td></td></t<>	PO/AFE:		Requisitioner				14	E				- E								ш	
Richards Creek - Station 1 28-Oct-19 13:00 Water 3 R R Image: Station 2 Image: Station 3 Image: Station 3 <t< td=""><td>_SD:</td><td></td><td>Location:</td><td></td><td>19 - 19 </td><td></td><td></td><td>WH I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	_SD:		Location:		19 - 19 			WH I													
Richards Creek - Station 1 28-Oct-19 13:00 Water 3 R R Image: Station 2 Image: Station 3 Image: Station 3 <t< th=""><th>ALS Lab Wor</th><th>t: Erwii Erwii Erwii AFE/Co. Erwironmental Monitoring Course AFE/Co. Environmental Monitoring Course Ageuti FE: Requis Locatio Lab Work Order # (lab use only): ALS C iemple # Sample Identification and/or Coordinates se only) (This description will appear on the report) Richards Creek - Station 1 Richards Creek - Station 2 Richards Creek - Station 3 Drinking Water (DW) Samples¹ (client use)</th><th>ALS Contact:</th><th>Amber Springer</th><th>Sampler:</th><th>Students</th><th>IBEI</th><th>AL PAR</th><th>INTS</th><th>METAL</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>МР</th><th></th></t<>	ALS Lab Wor	t: Erwii Erwii Erwii AFE/Co. Erwironmental Monitoring Course AFE/Co. Environmental Monitoring Course Ageuti FE: Requis Locatio Lab Work Order # (lab use only): ALS C iemple # Sample Identification and/or Coordinates se only) (This description will appear on the report) Richards Creek - Station 1 Richards Creek - Station 2 Richards Creek - Station 3 Drinking Water (DW) Samples ¹ (client use)	ALS Contact:	Amber Springer	Sampler:	Students	IBEI	AL PAR	INTS	METAL										МР	
Richards Creek - Station 2 28-Oct-19 13:00 Water 3 R<				and a second		Sample Type	ñ	GENER	NUTRIE	TOTAL										SA	
Richards Creek - Station 3 28-Oct-19 13:00 Water 3 R R R I<		Richards Creek - Station 1		28-Oct-19	13:00	Water	3	R	R	R		1									
Drinking Water (DW) Samples ¹ (client use) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) SAMPLE CONDITION AS RECEIVED (lab use only) Drinking Water (DW) Samples ¹ (client use) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below (electronic COC only) SAMPLE CONDITION AS RECEIVED (lab use only) Pres amples taken from a Regulated DW System? Delection limits: ammonia (MDL = 0.005 mg/L), nitrite (MDL = 0.001 mg/L), othophosphate ImmaL COOLER TEMPERATURES *C FINAL COOLER TEMPERATURES *C		Richards Creek - Station 2		28-Oct-19	13:00	Water	3	R	R	Ŕ											
Drinking Water (DW) Samples' (client use) (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System?		Richards Creek - Station 3		28-Oct-19	13:00	Water	3	R	R	R											-
Drinking Water (DW) Samples' (client use) (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System? Ice Packs Ice Cubes Custody seal intact. Yes No Image: Process regulated DW System? Ice Packs Ice Cubes Custody seal intact. Yes No Are samples for human consumption/use? Detection limits: ammonia (MDL = 0.005 mg/L), nitrite (MDL = 0.001 mg/L), orthophosphate Image: Packs regulated DW System? Image: Packs regulated DW System?							1		-		+	1					-	+			-
Drinking Water (DW) Samples' (client use) (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System?		15	51-8		+		1						\vdash		+	+-	+	++			-
Drinking Water (DW) Samples' (client use) (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System? Ice Packs Ice Cubes Custody seal intact. Yes No Image: Process regulated DW System? Ice Packs Ice Cubes Custody seal intact. Yes No Are samples for human consumption/use? Detection limits: ammonia (MDL = 0.005 mg/L), nitrite (MDL = 0.001 mg/L), orthophosphate Image: Packs regulated DW System? Image: Packs regulated DW System?							-		-		+	+		\vdash	+	+	+	+			_
Drinking Water (DW) Samples' (client use) (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System? Ice Packs Ice Cubes Custody seal intact. Yes No Image: Process regulated DW System? Ice Packs Ice Cubes Custody seal intact. Yes No Are samples for human consumption/use? Detection limits: ammonia (MDL = 0.005 mg/L), nitrite (MDL = 0.001 mg/L), orthophosphate Image: Packs regulated DW System? Image: Packs regulated DW System?							<u> </u>		-		_	_	<u> </u>	\vdash	_	+	_	\vdash	\rightarrow		_
Drinking Water (DW) Samples' (client use) (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System? Ice Packs Ice Packs Ice Cubes Custody seal intact. Yes No Mare samples for human consumption/use? Detection limits: ammonia (MDL = 0.005 mg/L), nitrite (MDL = 0.001 mg/L), orthophosphate Initrite COLER TEMPERATURES *C FINAL COOLER TEMPERATURES *C FINAL COOLER TEMPERATURES *C															_	1	_	\vdash	$ \rightarrow $		_
Drinking Water (DW) Samples' (client use) (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System? Ice Packs Ice Cubes Custody seal intact. Yes No Image: Process regulated DW System? Ice Packs Ice Cubes Custody seal intact. Yes No Are samples for human consumption/use? Detection limits: ammonia (MDL = 0.005 mg/L), nitrite (MDL = 0.001 mg/L), orthophosphate Image: Packs regulated DW System? Image: Packs regulated DW System?		1																			
Drinking Water (DW) Samples' (client use) (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System? Ice Packs Ice Packs Ice Cubes Custody seal intact. Yes No Mare samples for human consumption/use? Detection limits: ammonia (MDL = 0.005 mg/L), nitrite (MDL = 0.001 mg/L), orthophosphate Initrite COLER TEMPERATURES *C FINAL COOLER TEMPERATURES *C FINAL COOLER TEMPERATURES *C																					1
Drinking Water (DW) Samples' (client use) (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System?	124422 -						-				-				-	+				- 0	-
Drinking Water (DW) Samples' (client use) (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System?					<u> </u>		-				-	+		\vdash	-	+	+-	+	+		+
Drinking Water (DW) Samples' (client use) (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System?				<u> </u>	+		-	<u>├</u>	-	+	-	-				+		+	-+		4
Drinking Water (DW) Samples' (client use) (electronic COC only) Frozen SIF Observations Yes No Are samples taken from a Regulated DW System? Ice Packs Ice Packs Ice Cubes Custody seal intact. Yes No Mare samples for human consumption/use? Detection limits: ammonia (MDL = 0.005 mg/L), nitrite (MDL = 0.001 mg/L), orthophosphate Initrite COLER TEMPERATURES *C FINAL COOLER TEMPERATURES *C FINAL COOLER TEMPERATURES *C	-						-		_		SAMO	ECON	DITIC	NASS	ECEN	(50 //	-	1			4
Are samples taken from a Regulated DW System? Image: Samples for human consumption/use? Detection limits: ammonia (MDL = 0.005 mg/L), nitrite (MDL = 0.001 mg/L), orthophosphate Ice Packs V ice Cubes I Custody seal intact. Yes No	Drinking	Water (DW) Samples ¹ (client use) Special Instruct			cking on the dro	p-down list below	Froze	èn	1	/1	SAMP1						_	nny)	Ne		T
□ YES NO Are samples for human consumption/use? Detection limits: annionia [MDL = 0.005 mg/L], nitrite [MDL = 0.001 mg/L], orthophosphate • NITTAL COCKET TEMPERATURES *C FINAL COCKET TEMPERATURES *C	Are samples tak	en from a Regulated DW System?								Ice Cul	bes [_	85			È
Are samples for human consumption/ use? Detection limits: ammonia (MDL = 0.005 mg/L), nitrite (MDL = 0.001 mg/L), orthophosphate									-		-	- 508	July St	-ser mittelig	. . 0	00			NU.		-
	Are samples for	human consumption/ use? Detection limits:	ammonia [MDL = 0 005	5 ma/L], nitrite fMDI	= 0.001 ma/l 1	orthophosphate					TEMPER	RATURES	S °C	- 1		FINA	L COOL F	R TEMP	ERATUR	RES °C	-
VES NO IMDL = 0.001 mg/Lj, total phosphorus (MDL = 0.002 mg/Lj, total nitrogen.		111D1 - 0 001 -					12	51	9	21		1.		1	1.40	1	T	T		T	-
		SHIPMENT RELEASE (client use) ric Demers Date: 30 Oct. 2019, 17:00	INTER OTHER	INITIAL SHIPMENT RECEPTION (lab use only) Received by Date 1 71 (1-					nly) FINAL SHIPMENT RECEPTION (lab use only) Change: Received by: Date:							ime:	_				

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE LABORATORY OPY Y VELLOW - CLIENT COPY
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIELY. By the use of this form the user ecknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.
I. H any woldre samples are taken form a Regulated Drinking Water (DW) system, please skill using an Authorized DW COC form.
I. H any woldre from a Regulated Drinking Water (DW) system, please skill using an Authorized DW COC form.

Chain of Custody from Second Sampling Event:

AL	.s)	Sa	mple Recei	ot Confirm	ation		23-NOV-19	1 01 3 16:12 (MT
Report Di	stribution:				Invoice D	istrib	ution:	
	Company Name:	Vancouver Island	University		Acct Name:	Vancouv	er Island University	
	Contact:	Eric Demers	Const Const		Contact:	Account	s Payable	
	Address:	Nanaimo Campus,			Address:	Nanaimo	o Campus, 900 Filth Stree	e
	Phone:	Nanaimo, BC, V98 250-753-3245	(555			Nanaime	o, BC, V9R 5S5	
		250-740-6482			Phone:	-		
	Email:	eric.demers@viu.d	a		Fax:	+		
	EDD Email:	A			Invoice Email:	eric.den	ners@viu.ca	
	Distribution:	Hard Copy: N	Email: Y Fax:	N EDD: N	Project #:	N/A		
					Account #:	MAL100		
Client Info	ormation:		30 A. (1990)		5.5.5 m		0.0	
	lob Reference #:	ENVIRONMENTA	MONITORING COL		Date Sampled:			
	Project PO #:	-			Date Received:			
Legal	Site Description: Quote #:	N/A N/A		Ch	Sampled By: ain Of Custody:		ts	
Workorde	er Summary						ONMENTAL MONITORIN	COUR
	ab Work Order #:			Ace	count Manager:			3 COOH
	completion date:	28-NOV-19					mple Disposal Information	section
15 Samples re	ceived at ALS in	VANCOUVER		address south	1.	below.		
Lab Sample ID	Client Sample ID		Date Sampled	Date Received		riority Flag	Sample Type	
L2386179-1	BECK CREEK - S	STATION 1	20-NOV-19 09:00	21-NOV-19 12:00	28-NOV-19		Water	
L2386179-2	BECK CREEK - S			21-NOV-19 12:00			Water	
L2386179-3	BECK CREEK - S			21-NOV-19 12:00			Water Water	
L2386179-4 L2386179-5	COTTLE CREEK			21-NOV-19 12:00 21-NOV-19 12:00			Water	
L2386179-5	COTTLE CREEK	COLUMN STREET COLUMN		21-NOV-19 12:00			Water	
L2386179-7		VER - STATION 1		21-NOV-19 12:00			Water	
L2386179-8		IVER - STATION 2		21-NOV-19 12:00			Water	
L2386179-9		VER - STATION 4		21-NOV-19 12:00			Water	
L2386179-10 L2386179-11	MILESTONE RIV	and the country and the	1	21-NOV-19 12:00			Water Water	
L2386179-11 L2386179-12	MILESTONE RIV			21-NOV-19 12:00 21-NOV-19 12:00			Water	
L2386179-12	RICHARDS CRE	enter anne anne anne anne anne anne anne an	serves se serve	21-NOV-19 12:00			Water	
L2386179-14	RICHARDS CRE			21-NOV-19 12:00			Water	
L2386179-15	RICHARDS CRE	EK-STATION 4	18-NOV-19 13:00	21-NOV-19 12:00	28-NOV-19		Water	
22300179-13			10-110-119 13:00	21-409-19 12:00	20-000-13		VVater	
	ADDYNESS BOBI 1		Jurnaby, BC, Canada				504 253 6700	
			100 C 100 C	global.com				

Page 2 of 3 23-NOV-19 16:12 (MT)

Analysis Requested :				Ĩ.							li i	
	Conductivity [Automated]	Conductivity Screen [Internal Use Only]	Hardness	Total Metals in Water by ICPOES	Total Nitrogen in water by Colour	Ammonia in Water by Fluorescence	Nitrite in Water by IC [Low Level]	Nitrate in Water by IC [Low Level]	Total P in Water by Colour	pH by Meler [Automated]	Diss. Orthophosphate in Water by Colour	Sample Handling and Disposal Fee
BECK CREEK - STATION 1	1	1	1	1	1	1	1	1	1	1	1	4
BECK CREEK - STATION 2	1	1	1	1	1	1	1	1	1	1	1	1
BECK CREEK - STATION 3	1	1	1	1	1	1	1	1	1	1	1	1
COTTLE CREEK - STATION 1	1	1	1	1	1	1	1	1	1	1	1	1
COTTLE CREEK - STATION 2	1	1	1	1	1	1	1	1	1	1	1	+
COTTLE CREEK - STATION 4	1	1	1	1	1	1	1	1	4	1	4	1
ENGLISHMAN RIVER - STATION 1	1	1	*	*	1	1	4	4	4	4	4	*
ENGLISHMAN RIVER - STATION 2	4	4	*	*	4	~	4	1	1	1	1	4
ENGLISHMAN RIVER - STATION 4	1	1	1	1	1	1	1	1	1	1	4	1
MILESTONE RIVER - STATION 1	1	1	1	1	1	1	~	1	1	1	1	1
MILESTONE RIVER - STATION 2	1	1	1	4	1	1	1	1	1	1	1	1
MILESTONE RIVER - STATION 4	1	1	1	1	1	1	1	1	1	1	1	1
RICHARDS CREEK - STATION 1	1	1	1	1	1	1	1	1	1	1	1	1
RICHARDS CREEK - STATION 3	1	1	4	4	1	1	1	1	1	1	1	+
RICHARDS CREEK - STATION 4	1	1	1	1	1	1	1	1	4	1	4	1

Hold Time Exceedences: The following samples have exceeded recommended holding times prior to sample receipt.

Analysis Requested	Lab Sample ID	Recommended Hold Time	Date Sampled	Date Received
pH by Meter (Automated)	L2386179-13, 13, 14, 14, 15, 15	0.25 hours	18-NOV-19	21-NOV-19
pH by Meter (Automated)	L2386179-10, 10, 11, 11, 12, 12	0.25 hours	19-NOV-19	21-NOV-19
pH by Meter (Automated)	L2386179-1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9	0.25 hours	20-NOV-19	21-NOV-19

Page 3 of 3 23-NOV-19 16:12 (MT)

Sample Integrity Observations: No observations were identified for this work order submission.

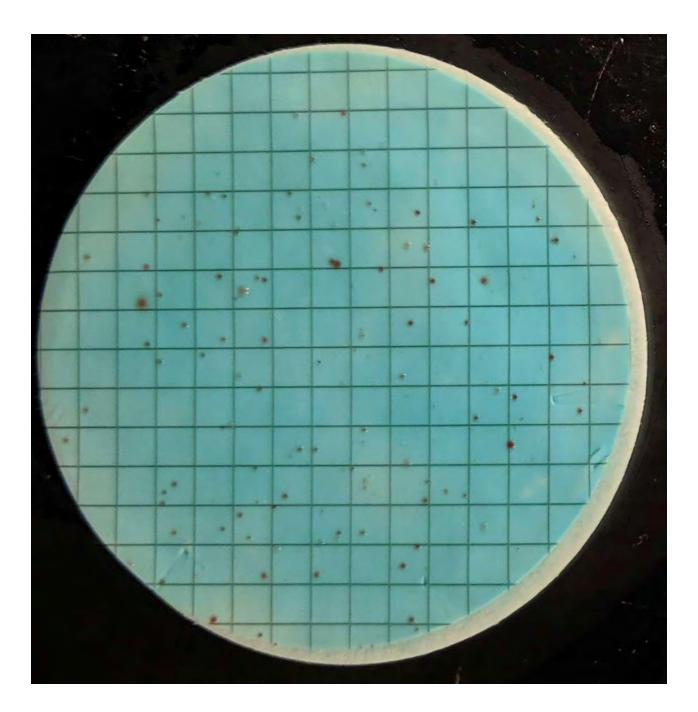
Sample Disposal Information:

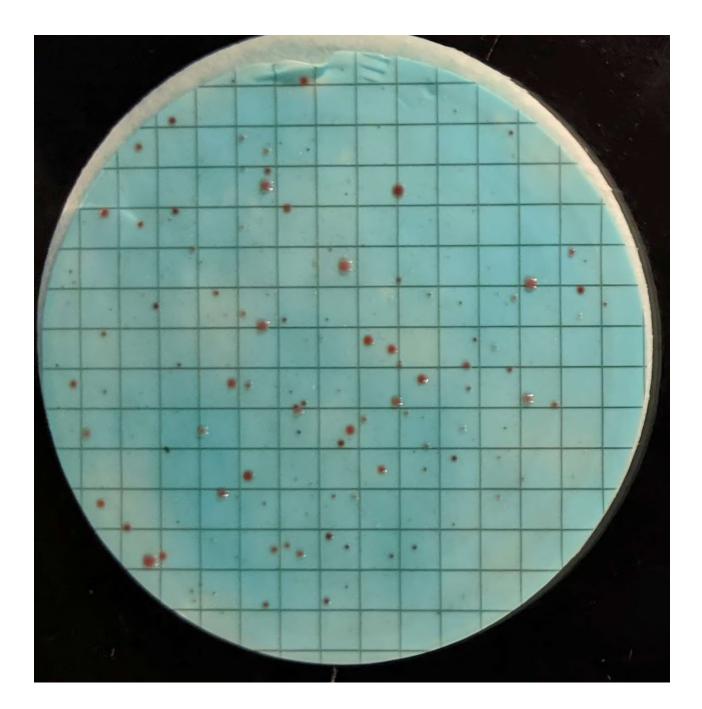
Where possible, ALS will store samples for the following durations, measured from date of sample submission: 45 days for Soil and Water samples, 6 months for Tissue/Biota samples, 14 days for air samples collected on re-usable media; and 3 days for water samples submitted for microbiological testing. Longer storage times are available upon request.

For information about ALS accreditations and certifications please contact your Account Manager or visit our webpage at www.alsglobal.com (see Canada downloads).

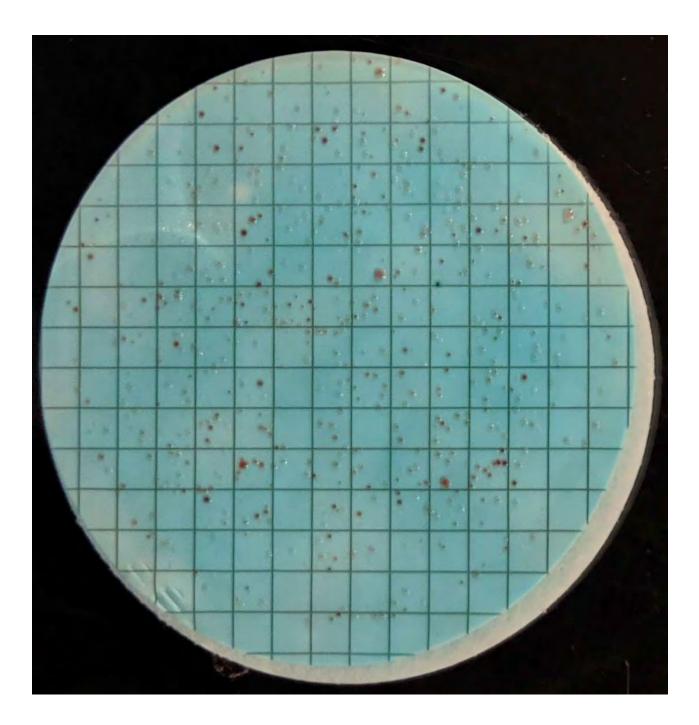
ALS Group strives to deliver on-time results to our clients at all times. However, there are times when due to capacity issues or other unforeseen circumstances we are unable to meet our expected turnaround times. The information above is related to a recent workorder you have submitted to our laboratory. In the event that you have an inquiry, please refer to the Lab Work Order # when calling your Account Manager.

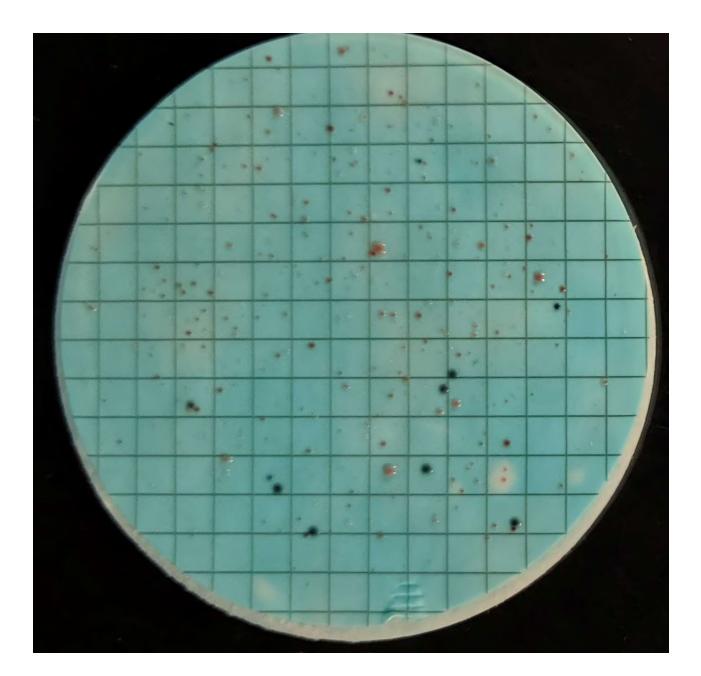
ALS Group appreciates your business. Thank you for the opportunity to work with you.


ALS					quest Form	Analytical		-2386179-C							OC Num	Pa	ge	1 of	2			
Report To	WWW alsolobal.com	T] bany name below wi] ap	pear on the final reg	tort	T	Report Format	Distribution						L	- Cont	et your	AM	confir	m all E	RP TATE	Isumban	ges may app	olul
Company:	Vancouver Island Un	and a second		-	Select Report P	Format:			Star	dard	TATI	s 15 b	2011 - 11 - 11 - 11 - 11 - 11 - 11 - 11							busines	****	-11
Contact:	Eric Demers				-	(QC) Report with F			I	-	_	egular		7						R - Regu		ſ
Phone:	250-753-3245				-	ts to Criteria on Report -			OBITY	1		-50%]	SU 8		in the second					E - 100%		Ē
	Company address belo	w will appear on the f	inal report		Select Distribut	ion: 🖸 EMAIL	MAIL	FAX	84	6 da	y [E-	100%]			The state			-0.19 8 1		a - 202622		10
Street	900 Fifth Street	-			Email 1 or Fax	eric.demers@viu.	ca		1	Date ar	nd Tim	e Requir	ed for al	_				d	d-mmm-	yy hh:m	m	
City/Province:	Nanaimo, BC	9023		1.00	Email 2				For te	als that	can not	be perfor	med acco	rding to t	e service	level se	elected, y	ou will be	contacted	8		110 cm
Postal Code:	V9R 5S5				Email 3							_	-		Ana	lysis	Reque	st				
Invoice To	Same as Report To	VES				Invoice Di	stribution	1989 - State	10		1	indicate i	Filtered (F). Preser	ved (P) a	Filtere	ed and P	reserved	(F/P) belo	788	D D	1 7
	Copy of Invoice with I	Report VES	NO NO		Select Invoice (Distribution: 🔄 EM		E FAX	SS.		P	P									<u> </u>	io II
Company:					Email 1 or Fax	eric.demers@viu.	ca		1별												- P	Luc
Contact:		1100 CT			Email 2		5		AINE													Ins
		Information			Oi	l and Gas Require		t use)	CONT.												No	scia
ALS Account #					AFE/Cost Center:		PO#		ð	L											0	ŝ
Job #:	Environmental Monito	oring Course			Major/Minor Code:		Routing Code			8											S	(200
PO/AFE:			1		Requisitioner:		2		Ь	EI E					1 3						1 111	8
LSD:					Location:				- CC	AM		0									1	2
ALS Lab Wor	rk Order # (lab use o	nly}:			ALS Contact:	Amber Springer	Sampler:	Students .	NUMBE	GENERAL PARAMETERS	SNTS	METALS							1		AMPLI	SUSPECTED HAZARD (see Special Instructions)
ALS Sample # (lab use only)	17. 1930	mple Identificatio				Date (dd-mmm-yy)	Time (hh.mm)	Sample Type	15	GENER	NUTRIENTS	TOTAL									SA	SUSPE
	Beck Creek - Station	1				20-Nov-19	9:00	Water	3	R	R	R										
	Beck Creek - Station	2				20-Nov-19	9:00	Water	3	R	R	R				-						+
	Beck Creek - Station	3				20-Nov-19	9;00	Water	3	R	R	R						-	-		1000	+
	Cottle Creek - Station	1				20-Nov-19	13:00	Water	3	R	R	R	-	+	+	-	+		+	\vdash	+	+
	Cottle Creek - Station	2 <u>8</u>				20-Nov-19	13:00	Water	3	R	R	R	-	+	+ +	-	-	-	+-		+	+
	Cottle Creek - Station		F			20-Nov-19			-			+ +		+		-	+	-	-			+
		82					13:00	· Water	3	R	R	R	-	10	- 1	_	-				1	+
	Englishman River - S				¥	20-Nov-19	9:00	Water	3	R	R	R		_					_		-	_
	Englishman River - S	ation 2				20-Nov-19	9.00	Water	3	R	R	R						_	1			
	Englishman River - Sl	ation 4			0.355,7568	20-Nov-19	9:00	Water	3	R	R	R									-	
	Millstone River - Stati	on 1				19-Nov-19	13:00	Water	3	R	R	R										
	Millstone River - Stati	on 2				19-Nov-19	13:00	Water	3	R	R	R										
	Millstone River - Stati	on 4				19-Nov-19	13:00	Water	3	R	R	R									100	+
			Special Instruc	tions / S	pecify Criteria to	add on report by clic	king on the dro	n-down list below	1	1		11	SAMP	LE COM	DITIO	AS	RECEI	VED (1	ab use o	nly)		
Are samples tak	Water (DW) Samples en from a Regulated DW					tronic COC only)				acks			ubes [Observ tody se			'es r'es			io Io	
			0			mail 1 alerta turos	- 0.004	adapathereter	Cool	-	itiated	_	1							TEL	ATURES *C	
	human consumption/ u	507				mg/L], nitrite [MDL MDL = 0.002 mg/L].		, orthophosphate	-	IN	T	CCOLER	RTEMPE	RATURE	5°C			1.11	L COOLE	RIEMPER	ATORESIC	
L] YE		LEASE /alliant		0-1-0	N. 18 19			linh una anhai	L		-							<u>1</u> (1			
Released by: E		LEASE (client use Date: 20 Nov. 20		Time:	Received by:	INITIAL SHIPMEN	Date:	(iab use only)	Time		Ren	eived b		FINAL	SHIP	Date:			(lab us		Time:	
		TIONS AND SAMPLIN							LOW -		1 eo	- veu 0	7-	16	۱ I	0.9169	x	1 1	JUV	19	12:0	NP

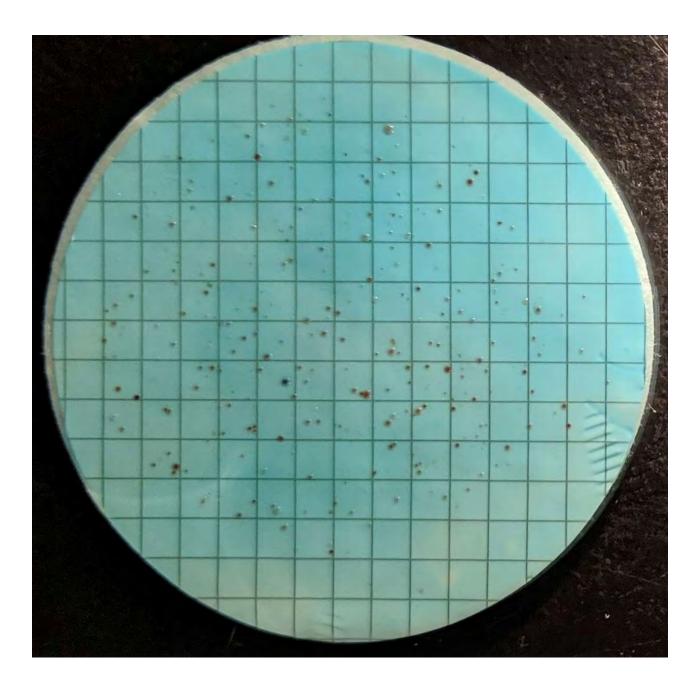

	www.alsglobal.com											1.								
Report To	Contact and company name below will a Vancouver Island University	ppear on the final report	Colort Doord (Report Forma			-												ges may app	aly)
Company: Contact:	Eric Demers		-	Format: I PDF (QC) Report with F			Stan	-		-			1010	-				5 busines R - Regul		
Phone:	250-753-3245			(QC) Report with F			S Day			egular -50%]			indyan yab ay					E - 100%]		L L
1010.	Company address below will appear on the	final report		tion: EMAIL			PRIO IN	1		100%]			Busine	5.0	121110-32	Juay -	CICAL	100 /6		L.
treet:	900 Fifth Street	in the second		eric.demers@viu.			-				_	I E&P TA		+			td-mmm	-yy hh:m	m	-
City/Province:	Nanaimo, BC		Email 2				_	11111			1-2-20-20-20-20-20-20-20-20-20-20-20-20-2	(1973) A. 197		ice level a	nincted a		e contacted			
cstal Code:	V9R 555		Email 3						Can Hot	oc perio	A line of occ	cruing to			Reque		C COMMON			
nvoice To	Same as Report To	□ NO	Lindi V	Invoice Di	stribution			<u> </u>	3	indicate	Filtered	F), Prese					d (F/P) belo	2W		
	Copy of Invoice with Report YES	the state of the s	Select Invoice I	Distribution: 🖸 EM		FAX	- Se		P	P			T	1					-1 -	Suc
Company:				eric.demers@viu.			Ξ		-	ľ		+	+	+	+	-		++	Ę	19
Contact:			Email 2				1¥												II	rate
	Project Information			I and Gas Require	d Fields (client	tuse)	CONTAINERS													197
LS Account #	#/ Quote #		AFE/Cost Center.	1	PO#		IZ			1									S	Dec
Job #:	Environmental Monitoring Course	1	Major/Minor Code:	ê.	Routing Code:		18	0							1				1000	90
PO / AFE:			Requisitioner:		1		Ь	E											L S	9) Q2
SD:		8	Location:			4 		WE											1 3	ZAF
ALS Lab Wor	rk Order # (lab use only):		ALS Contact:	Amber Springer	Sampler:	Students	NUMBER	GENERAL PARAMETERS	NTS	METALS									SAMP	SUSPECTED HAZARD (see Special Instructions)
ALS Sample # (lab use only)	C 3204 - N - 2000 - 14	on and/or Coordinates I appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	15	GNER	NUTRIENTS	TOTAL									SA	USPE
	Richards Creek - Station 1			18-Nov-19	13:00	Water	3	R	R	R		-	+	+	\vdash	-	-			+
	Richards Creek - Station 3			18-Nov-19	13:00	Water	3	R	R	R	-	-	+	-	++	-				
	Richards Creek - Station 4			18-Nov-19	13:00	Water	3	R	8	R	-	+	+	+	\vdash	-		++-		+
-	Indialds Cleak - Station 4		2	10-100-10	13.00	vvater	3	R.	R	R		-	+	+	\vdash	+	+	\vdash	+	+
			1											1		-	1	\vdash		
																				_
							+				_	_	+	+			-	\vdash	<u> </u>	
		5) 191					-	-	-			-	+	-	\vdash	+		\vdash		+
	77 - 20						-		-		-	+	+	+	\vdash	+	-	++-	+	+-
													+	+					-	+
		722-0200	12.22										1	1					-	
Drinking	Water (DW) Samples ¹ (client use)	Special Instructions / S		add on report by clic stronic COC only)	king on the dro	p-down list below					-						lab use c			
re samples tak	en from a Regulated DW System?		feret	cuonic coc only			Froze							rvation		Yes			10	Н
								ng Ini			upes	Gu	stody	seai int	ict	Yes		N	lo	С
10000	human consumption/ use?	Detection limits: ammo	nia IMDL = 0.005	ma/L1 nitrite [MDI	= 0.001 mg/l 1	orthonhosphata	000	-		_	P TEMP	ERATURI	S 40		_	() FIN	41 COOLE	R TEMPER	ATURES C	
		[MDL = 0.001 mg/L], to				cratophospilate			a diama a	10002	- I Laff				a	C. and	Louise	- Char Liv	- One o	100
110		1				ash was said									1	2	_			
	SHIPMENT RELEASE (client us	(a)	19 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	INITIAL SHIPMEN	I RECEPTION				1 C C C C C			FINA	I SH	DWEN.	TRECE	PTION	N (lab us	e only		

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user admonwledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.
1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.


Appendix D – Microbiological Coliform Plates



Site 2:



Site 3:

Site 4:

Replicate (Site 1):

Appendix E – Invertebrate Data Sheets

Stream Name:	Cottle Cr	reek	Date:	10/30/19	10		S	ECTION 1 - AB	UNDANCE	AND DENSITY		
itation Name:	Station	1	Flow status:	Low	ABUNDANG	CE: Total num	ber of organi	isms from cell C	T:		29	1
ampler Used:	Number of replicates To	tal area sampled (Hes	s Surber = 0.0	9 m ²) x no replicates	DENSITY	Invertebrate	density per t	otal area sample	ad:			
Hess Sampler	3	an area campica (rise	o, ouroor o.c	0.27 m		inventebrate	density per t	otal area sample		From page 1	407.007	
					-			29	+	0.27 m ² =	107.407	m ²
Column A	Column B	Colu	umn C	Column D								
Pollution Tolerance	Common Name	Number	Counted	Number of Taxa	PREDOMIN	ANT TAXON:				Ste	onefly Nymph	
10-01-01	Caddisfly Larva (EPT)				Invertebrate	group with the	e highest nu	mber counted (in	n Col. C)	Sic	meny Nymph	
Category 1	Mayfly Nymph (EPT)		3	1								
	Stonefly Nymph (EPT)	1	14	3	(· · · · ·		SEC	TION 2 - WATE	RQUALITY	ASSESSMENTS		
	Dobsonfly (hellgrammite)				POLLUTION	TOLERANC	E INDEX: S	ub-total number	of taxa foun	d in each tolerance	category.	
Pollution	Gilled Snail				Good	Acceptable	Marginal	Poor	3 x	D1 + 2 x D2 + D3	21	
Intolerant	Riffle Beetle			e	>22	22-17	16-11	<11	3 x	4+2x3+3=	21	1
	Water Penny										-	
Sub-Total		3	17	4	EPT INDEX	: Total numbe	r of EPT taxa	a.				
	Alderfly Larva				Good	Acceptable	Marginal	Poor	EPT	14 + EPT5 + EPT6	4	
Category 2	Aquatic Beetle				>8	5-8	2-4	0-1		0 + 1 + 3 =	4	
	Aquatic Sowbug											
	Clam, Mussel				EPT TO TO	TAL RATIO	NDEX: Total	number of EPT	organisms o	livided by the total n	umber of organisms.	
	Cranefly Larva		7	3	Good	Acceptable	Marginal	Poor	(EPT1	+ EPT2 + EPT3) / CT	0.590	0
	Crayfish				0.75-1.0	0.50-0.74	0.25-0.49	<0.25	(0 -	+ 3 + 14) / 29 =	0.586	D
Somewhat	Damselfly Larva											
Pollution Tolerant	Dragonfly Larva							SECTIO	N 3 - DIVER	SITY		
	Fishfly Larva			X	TOTAL NUM	MBER OF TAX	XA: Total nu	mber of taxa fro	m cell DT:		10	
	Amphipod (freshwater shr	imp)									10	
	Watersnipe Larva		-	A								
Sub-Total			7	3	PREDOMIN	ANT TAXON	RATIO INDE	X: Number of in	nvertebrate i	the predominant	taxon (S1) divided by	CT.
	Aquatic Worm (oligochaet	e)	4	2	Good	Acceptable	Marginal	Poor	C	ol. C for S1 / CT	0.40	2
Category 3	Blackfly Larva				<0,40	0.40-0.59	0.60-0.79	0.80-1.0		14 / 29 =	0.482	4
	Leech											
	Midge Larva (chironomid)		1	1	1.1		SECTIO	ON 4 - OVERAL	L SITE ASS	ESSMENT RATING	1	
6.00	Planarian (flatworm)				SITE ASSE	SSMENT RAT	ING: Assign	a rating of 1-4	to each inde	x (S2, S3, S4, S5), t	hen calculate the aver	rage.
Pollution Tolerant	Pouch and Pond Snails				Assessm	ent Rating		Assessment		Rating	Average R	Rating
TOIGLAIL	True Bug Adult				Good	4		Pollution Toler	ance Index	3	Average of R1, F	R2, R3, R
	Water Mite				Acceptable	3		EPT Index	_	2	0.75	
Sub-Total			5	3	Marginal	2		EPT To Total F	Ratio	3	2.75	,
TOTAL			29	10	Poor	1		Predominant T	axon Ratio	3		

INVERTEBRATE SURVEY FIELD DATA SHEET (Page 1 of 2)

INVERTEBRATE SURVEY INTERPRETATION SHEET (Page 2 of 2)

Stream Name:	Cottle	Creek	Date:	10/30/19	1		s	ECTION 1 - ABUND	ANCE	AND DENSITY	
Station Name:	Stat	ion 2	Flow status:	Low	ABUNDANC	E: Total num	ber of organ	sms from cell CT:			20
Sampler Used: Hess Sampler	Number of replicates 3	Total area sampled (He	ss, Surber = 0.0	09 m²) x no. replicates 0.27 m	10 10 10 00 CO	Invertebrate	density per t	otal area sampled:	+	From page 1	74.074
Column A Pollution Tolerance	Column B Common Nan		lumn C er Counted	Column D Number of Taxa	PREDOMIN	ANT TAXON:		20		,	c Clams/Worms
a second s	Caddisfly Larva (EPT)				Invertebrate	group with th	e highest nu	mber counted (in Co	L C)	Aquati	c clains/worns
Category 1	Mayfly Nymph (EPT)									1. State 1. State 1.	
	Stonefly Nymph (EPT)				· · · · · ·		SEC	TION 2 - WATER Q	UALITY	ASSESSMENTS	
	Dobsonfly (heligrammit	e)			POLLUTION	TOLERANC	E INDEX: S	ub-total number of ta	xa four	d in each tolerance of	category.
Pollution	Gilled Snail			-	Good	Acceptable	Marginal	Poor	31	D1+2xD2+D3	9
Intolerant	Riffle Beetle			1	>22	22-17	16-11	<11	3)	0 + 2 x 4 + 4 =	9
	Water Penny				1000		1.0				
Sub-Total			0	0	EPT INDEX	Total numbe	r of EPT tax	а.			Aug.
	Alderfly Larva				Good	Acceptable	Marginal	Poor	EP	T4 + EPT5 + EPT6	0
Category 2	Aquatic Beetle				>8	5-8	2-4	0-1		0 + 0 + 0 =	U
	Aquatic Sowbug			1	1.000		1.00				
	Clam, Mussel		8	1	EPT TO TO	TAL RATIO	NDEX: Total	number of EPT orga	nisms	divided by the total n	umber of organisms.
	Cranefly Larva		1	1	Good	Acceptable	Marginal	Poor	(EPT1	+ EPT2 + EPT3) / CT	0.000
	Crayfish				0.75-1.0	0.50-0.74	0.25-0.49	<0.25	(0	+ 0 + 0) / 20 =	0.000
Somewhat Pollution	Damselfly Larva						1.1.1.1				
Tolerant	Dragonfly Larva		1	1				SECTION 3	- DIVER	RSITY	
	Fishfly Larva				TOTAL NUM	ABER OF TA	XA: Total nu	mber of taxa from ce	DT:		5
	Amphipod (freshwater	shrimp)	2	1	100000						5
	Watersnipe Larva										a de la composition de la comp
Sub-Total			12	4	PREDOMIN	ANT TAXON	RATIO INDE	X: Number of invert	ebrate	n the predominant	taxon (S1) divided by CT.
1	Aquatic Worm (oligoch	aete)	8	1	Good	Acceptable	Marginal	Poor	C	Col. C for S1 / CT	0.4
Category 3	Blackfly Larva				<0.40	0.40-0.59	0.60-0.79	0.80-1.0		8 / 20 =	0.4
	Leech										
	Midge Larva (chironom	id)			· · · · ·		SECTIO	ON 4 - OVERALL SI	TE ASS	SESSMENT RATING	e
	Planarian (flatworm)				SITE ASSES	SMENT RAT	ING: Assign	a rating of 1-4 to ea	ch inde	x (S2, S3, S4, S5), t	hen calculate the average.
Pollution Tolerant	Pouch and Pond Snails	5			Assessm	ent Rating	1	Assessment	_	Rating	Average Rating
rolerant	True Bug Adult				Good	4	7 T	Pollution Tolerance	Index	1	Average of R1, R2, R3, R4
	Water Mite				Acceptable	3	04 1	EPT Index		1	4.50
Sub-Total			8	1	Marginal	2	1	EPT To Total Ratio		1	1.50
TOTAL		ĺ	20	5	Poor	1	1 (Predominant Taxor	Ratio	3	

Stream Name:	Cottle	Creek	Date:	10/30/19	"ר			ECTION 1 - ABUNDA			ugo 2 01 2/
Station Name:			Flow status:	10000	ABUNDANC	F. Total num	her of organ	isms from cell CT:			-
station Name.	Sta	tion 4	Tiow Status.	Low	ABOILDAIL	E. Total Hall	ber of organ			/	55
Sampler Used:	Number of replicates	Total area sampled (He	ss, Surber = 0.		A CREAT PROPERTY OF	Invertebrate	density per	total area sampled:			
Hess Sampler	3	1	10 1 1 1 1 L	0.27 m				55 4	From page 1	2	203.704
Column A	Column B	6	lumn C	Column D	7			55 +	0.27 r	$n^2 =$	/ m²
Pollution Tolerance	Common Na	and the second se	er Counted	Number of Taxa	DREDOMIN	ANT TAXON:					
i onution i otorunice	Caddisfly Larva (EPT)		ci ocumea	Humber of Hum	a serie a regalación			mber counted (in Col.	C)	Aquatio	Worms
Category 1	Mayfly Nymph (EPT)		15	3	Invertebrate	group with th	e nignesi nu	mber counted (in Col.		_	
outogory 1	Stonefly Nymph (EPT)		10		-		000	TION & WATER OU		TO	
	Dobsonfly (hellgramm		_		POLITICA			TION 2 - WATER QU ub-total number of tax			00/
Pollution	Gilled Snail				Good	Acceptable	Marginal	Poor	3 x D1 + 2 x D2 + D3		ory.
Intolerant	Riffle Beetle				>22	22-17	16-11	<11	3x3+2x1+4		15
	Water Penny						10,11		525-221-4		
Sub-Total	(ratar r onny		15	3		Total numbe	r of FPT tax	a			
	Alderfly Larva				Good	Acceptable	Marginal	Poor	EPT4 + EPT5 + EPT	6	
Category 2	Aquatic Beetle		-		>8	5-8	2-4	0-1	0+3+0=		3
	Aquatic Sowbug					- 20			0.0.0		
	Clam, Mussel				EPT TO TO	TAL RATIO	NDEX: Tota	number of EPT organ	isms divided by the	total numbe	of organisms.
	Cranefly Larva				Good	Acceptable	Marginal	Poor	(EPT1 + EPT2 + EPT3)		
	Crayfish	1			0.75-1.0	0.50-0.74	0.25-0.49	<0.25	(0 + 15 + 0) / 55 =		0.272
Somewhat	Damselfly Larva					1.22222			1		
Pollution Tolerant	Dragonfly Larva			-				SECTION 3 -	DIVERSITY		
Tolerant	Fishfly Larva				TOTAL NUM	ABER OF TA	XA: Total nu	mber of taxa from cell	DT:		
	Amphipod (freshwater	shrimp)	17	1							8
	Watersnipe Larva										
Sub-Total			17	1	PREDOMIN	ANT TAXON	RATIO IND	EX: Number of inverte	brate in the predomi	nant taxor	(S1) divided by CT.
	Aquatic Worm (oligoc	naete)	20	3	Good	Acceptable	Marginal	Poor	Col. C for S1 / CT		0.26
Category 3	Blackfly Larva		1		<0.40	0.40-0.59	0.60-0.79	0.80-1.0	20 / 55 =		0.36
	Leech		1 a								
	Midge Larva (chironor	nid)	3	1			SECTI	ON 4 - OVERALL SIT	E ASSESSMENT RA	TING	
-	Planarian (flatworm)				SITE ASSES	SSMENT RAT	TING: Assign	a rating of 1-4 to eac	h index (S2, S3, S4,	S5), then o	alculate the average.
Pollution Tolerant	Pouch and Pond Snai	s			Assessm	ent Rating		Assessment	Rating		Average Rating
. or of unit	True Bug Adult				Good	4		Pollution Tolerance I	ndex 2		Average of R1, R2, R3, F
	Water Mite				Acceptable	3		EPT Index	2		2.25
Sub-Total		1000	23	4	Marginal	2		EPT To Total Ratio	2		2.25
TOTAL			55	8	Poor	1		Predominant Taxon	Ratio 3		

Appendix F - Site Hazard Assessment

Team safety was always a top priority when out in the field. Whether it was traveling to sample sites, collecting samples or analysing results, safety procedures were implemented. These safety procedures/considerations included:

- At least one team member carried a cell phone
- At least one team member carried a GPS device
- Sign in/out with project coordinator Dr. Eric Demers (VIU)
- All team members had first aid training
- At least one first aid kit was on scene
- Team safety and activity briefings took place prior to site visits
- All team members wore appropriate clothing/gear

Sample sites 1-4 along Cottle Creek each exhibited specific site hazards that needed to be considered by the team when in the field. These hazards ranged in nature from busy vehicle traffic to steep or slippery access points and are summarized in the table below:

	Site Number			
	#1	#2	#3	#4
Access to	Accessed	Accessed	Accessed	Accessed via
Sampling	down	off Rock	down from	East
Site on Cottle	embankment	City Road,	bridge	(downstream)
Creek	West	1km hike	crossing on	side of
	(upstream) of	to the	East	Stephenson Rd,
	Landalt Rd.,	outflow of	(downstream)	10m from fire
	South of	Cottle	side of	hydrant.
	Arrowsmith Rd.	Lake.	Nottingham	
			Rd.	

Site Specific Safety Hazards

On-Site Specific Hazards	Slippery in- stream logs and leaves, alder snags, brambles. Minimal traffic.	Slippery bridge.	Deeper water, marsh/boggy terrain, minimal traffic.	Old fencing, boulders, thick tree branches, moderate traffic.
Site Access Hazards	Steep, slippery, brambles, leaf litter, moss.	Minimal grade, no apparent hazards.	Medium grade, large boulders, moss, alders, brambles.	Minimal grade, fir tree branches, a few boulders.
In-Stream Hazards	Minimal, a few logs	Minimal, no apparent hazards.	Slippery grasses, boggy terrain.	Poor, many slippery rocks, deep water hole out of culvert.
Cottle Creek Flow/Depth at Initial Visit	Slow flow Shallow depth	Moderate flow Shallow depth	Moderate flow Medium depth	Moderate flow Deep out of culvert, shallow towards falls.

The team also followed the Site Safety Plan as listed provided by Dr. Eric Demers.

Following this plan and incorporating the information discussed above, effectively

ensured that the team overcame the hazards presented helped to ensure that safety

remained a top priority.

BRITISH COLUMBIA WATER QUALITY GUIDELINES

This table contains the guidelines for interpreting water quality in British Columbia. The guidelines represent the *maximum* allowable concentrations. References are provided on the next page.

Parameter	Guideline (mg/L)	Note	Reference
pН	6.5 - 9.0		1
Dissolved	≥5.0	All life stages other than buried embryo / alevin	1
Oxygen (DO)	≥9.0	Buried embryo / alevin life stages	-
Turbidity	Variable	Max. increase 5 NTU; if background 8-50 NTU	1
Turbluity	Vanadic	Max. increase 10%; if background ≥50 NTU	+
	0 - 10	High acid sensitivity	100
Alkalinity	10 - 20	Moderate acid sensitivity	2
	≥20	Low acid sensitivity	-
Hardness	<60	Soft water	3
	>120	Hard water	
Ammonia (NH ₃)	Variable	Varies with temperature and pH. See Tables in reference.	1
1.0.4	19.7	At pH 7 and 15°C	· · · · · · · · · · · · · · · · · · ·
	0.06	Chloride <2 mg/L	
	0.12	Chloride 2 - 4 mg/L	1
Nitrite (NO2-)	0.18	Chloride 4 - 6 mg/L	1
Sunser adde a	0.24	Chloride 6 - 8 mg/L	
	0.30	Chloride 8 - 10 mg/L	_
Aut. 1. 200-1	0.60	Chloride ≥10 mg/L	-
Nitrate (NO ₃ -)	32.8		1
and the second second	<0.010	Oligotrophic	1.1
Total Phosphorus (P)	0.010 - 0.025	Mesotrophic	3
	≥0.025	Eutrophic	
Aluminum (Al)	0.1	When pH ≥ 6.5	1
200131-06-90	Variable	When pH <6.5: 2.718 ^ [1.6 - 3.327 x (pH) + 0.402 x (pH) ²]	
Antimony (Sb)	0.009		2
Arsenic (As)	0.005		1
Barium (Ba)	1		2
Beryllium (Be)	0.00013		2
Boron (B)	1.2		1
Cadmium (Cd)	Variable	{2.718 ^ [1.03 × In(hardness) - 5.274]} / 1000	1
	<4	High acid sensitivity	1
Calcium (Ca)	4 - 8	Moderate acid sensitivity	2
	≥8	Low acid sensitivity	
Chromium (Cr)	0.001	For the more toxic Chromium VI	2
Cobalt (Co)	0.11	and the second	1
Copper (Cu)	0.003		1
Iron (Fe)	1		1
Lead (Pb)	Variable	{2.718 ^ [1.273 × In(hardness) - 1.46]} / 1000	1
Lithium (Li)	0.75	For irrigation	2
Manganese (Mn)	Variable	0.01102 x (hardness) + 0.54	1
Molybdenum (Mo)	2		1
	0.025	When hardness ≤60 mg/L	
Nickel (Ni)	Variable	When hardness = 60 - 180 mg/L:	2
		{2.718 ^ [0.76 x ln(hardness)+1.06]} / 1000	
Selenium	0.002		1
Silver IA-1	0.0001	When hardness <100 mg/L	2
Silver (Ag)	0.003	When hardness ≥100 mg/L	2
Thallium	0.0008		2
Tin	0.000022		2
Vanadium	0.05	Marine aquatic life	2
Carlanat	0.033	When hardness < 90 mg/L	-
Zinc (Zn)	Variable	When hardness ≥ 90 mg/L: [0.75 x (hardness - 90) + 33] / 1000	1

Appendix H – Discharge Calculations

Site:	Depth Measurements (cm):	Avera Dept Measure (m)	h ment	Average Wetted Width (m):	Cross Sectional Area (m²)	Time (s):		Average travel time/5m (s):	Velocit y (m/s):	Dischaı ge (m³/s):
1	3,4,3,1,1,3,4,3	0.026		0.39	0.01	3.6,3.3,4.6,3.88,3.0	68 (3.812	1.30	0.013
2	1,2,5,8,11,11,10,12,7,3	0.07		1.05	0.0735	6.89,6.75,7.50,6.5	7,6.85	5.912	0.72	0.053
3	10,25,10,24,20,20,21,15,2 10	5, 0.18		0.45	0.081	8.73,9.34,9.06,8.2	7,7.74 8	3.628	0.60	0.049
4	3,5,6,6,7,7,6,6,5,3	0.50		1.39	0.695	7.77,8.02,7.41,7.74	4,8.24	7.836	0.64	0.046
	Discharg	e Measu	reme	ents – 2	2 nd Even	t – Novemb	er 20	^h , 2019	7	
Site :	Discharg	Average Depth Measureme nt (m):	Avero e Wette Widt	ag Cros Sectioned al Are h (m²)	s on ea	t – Novemb Time (s):	Average e trave time/5 m (s):	g Veloci	t Disc	charge n³/s):
Site :	Depth Measurements	Average Depth Measureme	Averc e Wette	ag Cros Sectioned al Are h (m²)	s on ea)		Averag e trave time/5	g Veloci I y	t Disc	-
: 1 2	Depth Measurements (cm): 1,3,4,5,6,6,5,4,3,1	Average Depth Measureme nt (m):	Averc e Wette Widt (m):	ag Cros Sectio ed al Are h (m ²) :	s on ea) 3.55,3.9	Time (s):	Averag e trave time/5 m (s):	g Veloci I y (m/s)	t Disc (r	-
: 1 2 3	Depth Measurements (cm): 1,3,4,5,6,6,5,4,3,1 10,8,717,21,17,9,10,13,15 ,17	Average Depth Measureme nt (m): 0.038	Averce Wette Widt (m): 0.55	ag Cros Section ed al Are h (m ²) : 0.0209	s on ea) 3.55,3.9 7 5.1,4.7,	Time (s): 93,3.68,3.67,3.79	Averag e trave time/5 m (s): 3.72	y Veloci y (m/s) 1.34	t Disc (r 0.03	-