
PHYS 112

Introduction to Measurement & Calculation

Significant Figures

Significant figures indicate the reliably known digits in an experimental value; they are typically
determined by the precision of the instrument(s) used to make the measurement(s). When perform-
ing calculations using measured values, keep in mind that not all digits in the answer displayed by
your calculator are necessarily significant (see Calculation & Significant Figures).

In the lab we observe the following (standard) conventions regarding significant figures:

1. All non-zero digits ARE significant

2. Zeroes between non-zero digits ARE significant

3. Leading zeroes are NOT significant

4. Trailing zeroes ARE significant IF there is a decimal point

5. All digits ARE significant when a number is expressed in scientific notation

(Example) The numbers 19.7, 80, 0.0031 and 0.2050 have 3, 1, 2 and 4 significant figures respec-
tively. As written, 15,600 would have 3 sig figs; if written as 15,600. (with an explicit decimal point)
it would be considered to have 5 sig figs. One could avoid potential confusion by using scientific
notation, i.e. writing 1.56⇥ 104 for 3 sig figs or 1.5600⇥ 104 for 5 sig figs.

Precision and Accuracy

Precision and accuracy are terms which are often (incorrectly! ) used interchangeably.

Precision refers to how well a value is known. There is no such thing as an exact mea-
surement; there is always some error or uncertainty associated with it. The uncertainty in a
measurement may be very small, but it is never zero. The uncertainty describes the range of values
within which you are reasonably sure the measurement lies. The smaller the uncertainty, the more
precisely the value is known. Precision may be indicated by the number of decimal places in a value.

(Example) The acceleration due to gravity is found by various experimental methods to be 9.8,
9.81 and 9.805 m/s

2. The third value, 9.805 m/s
2, is the most precise because it is determined to

within one thousandth of a m/s2 (3 decimal places). The first value, 9.8 m/s
2, is the least precise

because it is only determined to one tenth of a m/s2 (1 decimal place).

Accuracy refers to how close a result is to the actual or true value.

(Example) 9.7 m/s
2 is a more accurate value of the acceleration due to gravity than 9.6 m/s

2

is, since the expected value is 9.8 m/s
2 (to two significant figures). The values are equally precise,

however, since they are both determined to a tenth of a m/s2 (1 decimal place).
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Recording of Experimental Values

In the physics lab experimental values will be recorded to the precision of the measuring instru-
ment, which is taken to be the smallest division indicated on the instrument. This must however
be tempered with reasonable judgment as cases may arise where the precision of the measurement
is much less than the (theoretical) precision of the measuring instrument.

It is good experimental practice to record all measurements as read directly from

an instrument or measuring device, without any unit conversion or calculation. For
example, if a scale used to measure mass reads in grams, then record any measurements made
with that instrument in grams. If necessary, convert to kilograms or other units only after the
measurement is made and recorded in grams.

Metre Stick (metric scale or metric ruler)

Figure A: measurement of a rectangular block

The familiar metre stick is usually divided into centimetres and tenths of centimetres (millimetres),
with the centimetres being numbered - for example, see Figure A. The smallest divisions are tenths
of a cm (1 mm) and therefore the precision of the metre stick is 1 mm or 0.1 cm. If the ruler is
transparent and the graduations are on the underside, it may be laid flat on the object. If the ruler
is not transparent, or if the graduations are on the upper surface, the ruler should be held on edge
so that the graduations are in contact with the object. This eliminates errors due to parallax.

A linear distance measured with a ruler consists of two readings, which are the positions of both
ends of the object. Typically, the “zero” end of a metre stick is in poor condition and is not used
as one of the positions; otherwise, any other convenient line on the metre stick may be used. In
one step, a complete length measurement would be recorded as:

Length = (position of one end of block) - (position of other end of block) = (length of block)

(Example) The measurement of the length of the block in Figure A would be recorded as:

Length = 27.9 cm� 20.0 cm = 7.9 cm

Lengths may be measured directly if a (plastic) ruler has a well defined “zero” (i.e. using 0.0 cm).
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Triple Beam Balance

Figure B: Triple beam balance (left); closeup of counterweights when measuring (right).

The triple-beam balance derives its name from the three beams which carry the counterweights
that balance the weight on the pan. The balance determines the mass m of an object by exploit-
ing the linear relationship W = mg between an object’s weight W & the gravitational acceleration
g; this allows the balance to be graduated directly in mass units (e.g. readings yield mass in grams).

The object whose mass is to be determined is placed on the pan and a balance condition is achieved
by moving, in order, the counterweights on the hundreds beam, the tens beam and the units beam.
A static balance condition is indicated by the pointer on the beam being lined up with the central
mark on the scale on the end frame. The hundreds and tens beams have notches in which the
counterweights must sit in order for them to be in the correct positions. The units counterweight
may be placed at any position along its beam, the position being shown by the pointer in the centre
of the counterweight. The smallest division on the units beam is 0.1 g and therefore the precision
of the triple-beam balance is ±0.1 g, i.e. to the nearest tenth of a gram.

The balance is subject to a zero error, i.e. when all the counterweights are set at 0, the pointer may
not be lined up with the central mark on the frame. The zero point is adjusted by turning the ad-
justment knob beneath the pan. The zero reading must be properly set BEFORE using the balance.

(Example) Assuming proper zeroing, the balance reading in Figure B is 30.0 + 0.0 + 4.5 = 34.5 g.

Calculation & Significant Figures

1). When adding or subtracting numbers, the precision of the sum or di↵erence is the same as
that of the least precise number in the set.

(Example) 4.513 + 3.9 = 8.413 is rounded to 8.4 because 3.9 is only good to one decimal place.

(Example) 110 + 39.5 = 149.5 = 150 since 110 (=1.1⇥ 102) is only good to the ‘tens’ place.

2). When multiplying or dividing numbers, the number of significant figures in the product or
quotient is the same as that of the number in the set which has the fewest significant figures. Note:
multiplication or division by a constant does not a↵ect the determination of significant figures.

(Example)
4.513⇥ 7.8

2.001
= 17.5919 is rounded to 18 because 7.8 has only two significant figures.
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3). When dealing with mixed calculations (e.g. combinations of addition, subtraction, multi-
plication and division one calculation) it is necessary to perform the calculation in steps, obeying
mathematical order of operations, in order to determine the proper significant figures in the final
answer. You CANNOT do such calculations in a single step on your calculator and

properly account for significant figures. To minimize round-o↵ error it is common prac-
tice to retain (at least) one EXTRA digit during steps in a calculation and mark the position of the
least significant digit by underlining it, e.g. 7.0236 or 591.422 where the final 6 or 22 to the right
of the underlined digit are NOT significant.

(Example) Calculate the volume of a rectangular solid if the length, width and height are measured
to be 16.0 cm, 7.95 cm and 3.9 cm, respectively.

V = L⇥W ⇥H = (16.0)(7.95)(3.9) = 496.1 = 5.0⇥ 102 cm
3

Since all of the operations are multiplication/division, we can do this calculation in one step, ap-
plying the rule for sig figs & multiplication/division. In this case our final answer should have two
sig figs, since that is the lowest number of sig figs in the product; note that this results in rounding
UP to 500 and that scientific notation is required to clarify that only two digits are significant.

(Example) Calculate the density of the solid (above) if its mass is measured as 280.9 g.

⇢ =
m

V
=

280.9

496.1
= 0.566 = 0.57 g/cm

3

Since all of the operations are multiplication/division, we can do this calculation in one step, ap-
plying the rule for sig figs & multiplication/division. In this case we use the unrounded value for
the volume while noting the least significant digit for the purposes of rounding our final answer.

(Example) Calculate the surface area of a rectangular solid if the length, width and height are
measured to be 16.0 cm, 7.95 cm and 3.9 cm, respectively.

Area = 2LW + 2LH + 2WH

= 2(16.0)(7.95) + 2(16.0)(3.9) + 2(7.95)(3.9)

= 254.4 + 124.8 + 62.01

= 441.21

Area = 440 cm
2
or 4.4⇥ 102 cm

2

Using order of operations, the multiplications are performed FIRST. We apply the rule for sig
figs & multiplication/division to EACH of the three terms; as each term contains a number with a
minimum of two sig figs, this determines what we can retain for the product. Note that we ignore
the impact on sig figs of the constant ‘2’ in each term and keep an extra digit (or two) after the
underlined significant digit for each term. NOW the addition is performed and we apply the rule
for sig figs & addition/subtraction; in this case, our least precise value in the sum is known only to
the ‘tens’ and so we round our final answer appropriately and add units.

IF the area were used in a later calculation we would utilize the unrounded value but underline
the least significant digit for the purposes of applying the sig fig rules during that calculation.
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Comparing Values

1). Percent di↵erence compares two rounded experimental measurements:

Percent Di↵erence =
(higher value� lower value)

average value
⇥ 100%

Percent di↵erence is always positive and is reported with at most 2 significant figures.

(Example) Two students measure a rectangular block and calculate its volume. One finds the
volume to be 27 cm3 while the other gets 28 cm3. The percent di↵erence between their results is

Percent Di↵erence =
(high� low)

average
⇥ 100

=
(28� 27)

27.5
⇥ 100 =

1

27.5
⇥ 100 = 3.636% = 4%

Rounded for significant figures, the two values di↵er by 4%.

2). Percent deviation compares a rounded experimental measurement with its expected value1:

Percent Deviation =
(experimental � expected)

expected
⇥ 100%

Percent deviation may be positive or negative (i.e. whether the rounded experimental value is
greater than or less than the expected value) and is reported with at most 2 significant figures.

Percent deviation is sometimes also referred to as percent error .

(Example) A student calculates the density of aluminum to be 2.5 g/cm3; the published or expected
value is 2.70 g/cm3. The percent deviation is

Percent Deviation =
(experimental � expected)

expected
⇥ 100

=
(2.5� 2.70)

2.70
⇥ 100 =

�0.20

2.70
⇥ 100 = �7.407% = �7%

Rounded for significant figures, the experimental value is 7% BELOW the expected value.

1The expected value may be an accepted value for a physical constant like those given in a handbook of constants
(e.g. acceleration due to gravity at Earth’s surface) or something calculated theoretically using values determined
outside of the lab (e.g. using numbers provided by the manufacturer or accepted values for physical constants).
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NAME:

SECTION:

Laboratory 1 Pre-Lab (value: 2 marks)
Submit to your lab instructor by 4pm the day BEFORE your lab period.

1. How much force is required to stretch a spring 9.0 cm if it requires 22 N to stretch it 3.0 cm?

2. Write down the general equation of a straight line and identify/label each part of it.

3. Circle all linear graphs from those shown below and mark them with a ‘+’ , ‘-’ or ‘zero’ slope.

4. Calculate the slope of the (linear) data shown below. Show all work, points chosen, units, etc.

GGA/gga 23/08/24
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VANCOUVER ISLAND UNIVERSITY

Department of Physics, Engineering and Astronomy M-1

Laboratory 1:
Force Constant of a Spring

Experiments are to be completed on the provided laboratory sheets below; any supporting material
(eg. graphs) should be attached. Make sure your name and your partners name(s) are clearly
indicated on the front page of your lab. Neatness and clarity count! Explain your answers
clearly and concisely. If an equation is to be used in a calculation, write the equation down and
then insert numbers and solve. Report your final answer to the appropriate significant figures.

The lab write-up is due by the end of the lab. Late labs will not be accepted.

APPARATUS

Bench stand and support rod, spring, pointer, mass hanger, slotted masses, stop watch, stand with
metre-stick clamp, metre stick.

OBJECTIVE

1. To determine the force constant of a spring directly using Hookes law, and indirectly from its
period of oscillation.

THEORY

Part A. Hooke’s Law applied to a vertical spring

When an ideal spring is stretched by an applied force, the elongation of the spring is proportional
to the applied force. This is Hooke’s Law for a spring, which may be written as

F = kx (1)

where k is the force constant of the spring and x measures the amount the spring is stretched.
Consider a spring that hangs vertically with a hanger and pointer attached, as shown in Figure 1a.

Applying Hooke’s Law, it follows that

Mog = k(yo � yu)

and

(M +Mo)g = k(y � yu)

where Mo is the mass of the hanger & pointer (as well as an extra factor due to the mass of the
spring itself) and M is the additional mass added. Rearranging these equations results in

y =
g

k
M + yo
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Figure 1: The extension of a vertical spring by the addition of mass.

Comparing the equation above with the general equation for a straight line, y = mx + b, we see
that a graph of y (pointer position) versus M (additional mass added) should be a straight line
with a slope equivalent to

slope =
g

k
(2)

Part B. Oscillation of a vertical spring

If the mass M + Mo is pulled down below the equilibrium position shown in Figure 1b and then
released, the system will oscillate in simple harmonic motion with a period, T , given by

T = 2⇡

s
M +Mo

k

This can be rewritten as

T 2 =
4⇡2

k
M +

4⇡2

k
Mo

Comparing the equation above with the general equation for a straight line, a graph of T 2 (period
squared) versus M (additional mass added) should be a straight line with a slope equivalent to

slope =
4⇡2

k
(3)
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DATE:
NAME:

PARTNER:

Laboratory 1:
Force Constant of a Spring

DATA COLLECTION

1. Clamp the stand to the bench and suspend the spring from the short horizontal rod. Attach
the pointer and the mass hanger to the lower end of the spring ⇠40 cm above it. Mount the metre
stick in the clamp with the zero end ‘up’ and the cm scale facing out.

2. [4 marks] Place a 100 g mass (the initial total added mass, M) onto the mass hanger and record
the position y of the pointer, at rest, in the table. Raise the mass hanger slightly (⇠ 2 cm with the
tip of a pencil) and release it. Make certain the mass is oscillating vertically and NOT bouncing
side-to-side. Measure the time T10 for 10 FULL oscillations of the system. Do this a couple

of times to make CERTAIN you are getting consistent times AND counting 10 FULL

oscillations. Hint: Start counting/timing with 0 (‘zero’) rather than 1 as you only COMPLETE
the first oscillation (‘one’) a full cycle AFTER you begin. Record a (consistent) ‘typical’ value for
T10 in Table 1. Increase M by 50 g and repeat, up to a total added mass of M = 300 g. ** NOTE:
M is the total ADDED mass & EXCLUDES the mass of the hanger; it is good to ±1g. **

M y y T10 Tavg T 2
avg

(kg) (cm) (m) (s) (s) (s2)

0.100

0.150

0.200

0.250

0.300

Table 1: vertical spring observational and calculated data.

3. [2 marks] Calculate the average time for ONE oscillation, Tavg, and its square, T 2
avg. Show

a FULL set of sample calculations for the entire first row of the table (i.e. M = 0.100 kg).
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Part A:

1. [4 marks] Plot a graph of pointer position y (m) vs. total mass added M (kg). Fill the graph
paper as much as possible and label your graph FULLY, i.e. title, axes, units, data points, etc.

2. [3 marks] Draw the line of best fit for your graph. Pick and clearly mark two (widely separated)
and easy-to-read points ON this line (they do NOT have to be data points!). Using these points,
determine the rise (�y) and run (�x), using appropriate significant figures and units:

rise (�y) = = run (�x) = =

Calculate the slope (�y/�x) of your line using proper sig figs. Show your work, including units.

3. [3 marks] Calculate the force constant k of the spring (in units of N/m) using Equation 2 and
your calculated slope (above). Assume g = 9.81 m/s2. Show all work/steps, etc.
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Part B:

1. [4 marks] Plot a graph of the square of the average period T 2
avg (s2) vs. total mass added M

(kg). Fill the graph paper as much as possible and label your graph FULLY, i.e. title, axes, etc.

2. [3 marks] Draw the line of best fit for your graph. Pick and clearly mark two (widely separated)
and easy-to-read points ON this line (they do NOT have to be data points!). Using these points,
determine the rise (�y) and run (�x), using appropriate significant figures and units:

rise (�y) = = run (�x) = =

Calculate the slope (�y/�x) of your line using proper sig figs. Show your work, including units.

3. [3 marks] Calculate the force constant k of the spring (in units of N/m) using Equation 3 and
your calculated slope (above). Show all of your work/steps, etc.

4. [2 marks]Compare your values of k (using percent di↵erence) & comment on their agreement.

5. If your graphs are linear AND your k values are consistent then dismantle and tidy the apparatus.
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