
EXPLORING SPACEX ASTR 311

Austin Daniels, Ethan Jones, Luke Shorting, Evan Dyce

Historical Influencees of SpaceX

Historical Influences

Key Missions Shaping Space Travel

- Apollo: First moon landings, deep-space navigation
 - Space Shuttle: First reusable spacecraft, ISS construction

From Government to Private Sector

- NASA-led missions dominated early space travel
- Private companies now drive innovation and cost reduction

The Apollo Program

Moon Landing and Legacy

- 1969: Apollo 11 landed on the moon
- Proved deep-space travel was possible

Key Tech Innovations

- Saturn V Rocket: Most powerful rocket of its time
- Lunar Module: Engineered for Moon landings
- Navigation and Planning: Paved the way for future missions


Figure 4. Saturn V (NASA, n.d)

The Space Shuttle Program

First Reusable Spacecraft Shaping Reusable Rockets Today Expanding Space Access

- Reduced launch costs compared to disposable rockets
- Inspired SpaceX's Falcon 9 reusability

- Built and supplied the ISS
- Deployed and repaired satellites

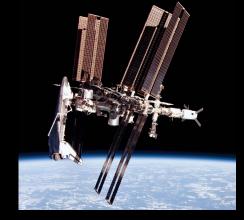


Figure 5. Shuttle launch profiles (Wikipedia, 2025)

Figure 6. ISS (Wikipedia, 2011)

Shift to Private Spaceflight

Budget Constraints to Public-Private Partnerships

 NASA partners with companies for cost-effective solutions

Commercial Crew Program

 SpaceX Crew Dragon and Boeing Starliner transport astronauts

SpaceX's Influence

- First private company to send humans to orbit
- Falcon 9 and Starship: Fully reusable, reducing costs
- Partnering on Artemis lunar lander

Figure 7. SpaceX Crew Dragon (NASA Kennedy, 2014)

SpaceX **Contributions to** Modern Astronomy

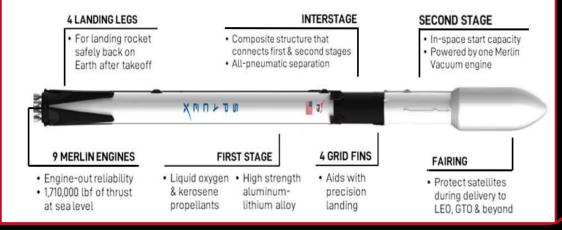
ROCKET REUSABILITY

How It Works

• 2 Stage Rocket

Figure 8: Falcon 9 Landing. Retrieved from

MTFdCC08

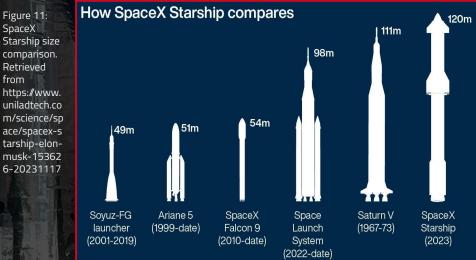

 First Stage Flips and begins descent to earth

https://giphy.com/gifs/buzzfeed-rocket-landing-falcon-heavy-3ohs4x1nhZ

Benefits

- Main Benefit is Lowered Cost
- More Frequent Launches (87 in 2015, to 263 in 2024 with SpaceX accounting for over 50%!)

Figure 9: Falcon 9 Architecture. Retrieved from https://www.spacex.com/media/falcon-users-guide-2025-03-14.pdf


SpaceX Starship

- SpaceX's super heavy rocket and spacecraft
- Payload capacity of 100 metric tons igodol(~17 Elephants)
- Allows Design to be secondary factor

Starships Effects on Astronomy

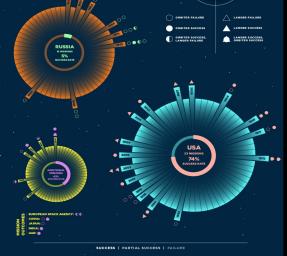
- Has already been chosen as the \bullet lander for Artemis III (2027)
- New Great Observatories?
- Contrast with Ariane 5

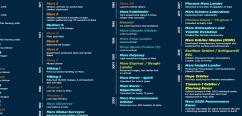
PA graphic

SpaceX

from

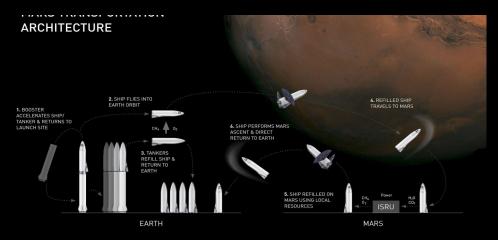
Mars Colonization


Mars Mission Plan


- Elon Musk is quoted stating that unmanned Mars missions are scheduled to take place, beginning in 2026.
- Manned shuttle mission are scheduled to begin in 2029 according to Musk.
- 2031 is a more realistic goal for manned missions.
- The goal is to beginning the construction of a self sustaining city in 20 years.

"The goal to maintain the lifespan of consciousness will increase if the human race can become multiplanetary" – Elon Musk (X Post, 2025)

Figure 12. Missions to Mars, retrieved from thttps://www.visualcapitalist.com/cp/every-mission-to-mars/...


MISSIONS TO MARS

Travel Plan

- Starship launches from Spaceport and ascends to Low Earth orbit
- Refuel with Tanker Spacecraft

- Minimal fuel used on descent to Mars due to aerobraking
- Begin process of establishing Mars as a base through use of Optimus
- Refuel through ISRU and depart

Figure 13. Mars Transportation Architecture, retrieved from https://www.humanmars.net/p/mars-base-alpha.html

Figure 14. Elon, Retrieved from

https://www.thehansindia.com/technology/tech-news/elon-muskassures-humans-to-travel-to-mars-in-next-5-to-10-years-72235

Technology Advancements for Mars

Optimus

Tesla's new humanoid robot

Figure 14. Optimus,

In Situ Resource Utilization (ISRU)

The possibility to utilize resources on Mars to refuel Starship. $CO2 + 2 H2O \rightarrow CH4 + 2 O2$

SpaceX's idea to refuel Starship after launch

Figure 15. Space Tankers Extravenicular Activity Suit (EVA)

A rapidly progressing design of new space suits

Challenges For SpaceX on Mars

ŝ

Costs

The costs would likely exceed trillions of dollars

Life Support

Functioning life support and energy generation

Health Concerns

Unknown components of Mars could lead to health complications

Tanker's

There hasn't been any confirmed trials of tankers for refuel

concerns

Do we terraform, who runs Mars, what are the implications?

Launch Windows

Launch windows open every 26 months

Is Mars realistic currently?

Time Lines

Figure 16. Mars The timelines placed by SpaceX are currently unrealistic with current technology and data.

Feasibility of Return Flights

The return flight to LMO is 72% above a realistic velocity budget

Technology Readiness

Currently the technology is not available for long term sustained missions to Mars.

Payloads

SpaceX has not released realistic payloads for manned expeditions on Starship. Realistic loads would far exceed its capacity at this time.

Ethical, Financial, and industry impact OF Private Sector

Challenges of Private Space Travel

Cost, Regulation, and Accessibility

- High costs limit accessibility
- Complex and evolving regulations
- Ethical concerns: exclusivity & commercialization

by Ken Kirtland IV Source: definitive-contract-nnm07aa75c \$3 600 000,000 for 3 sets of SRB for SLS Solid Rocket Booste 1 Falcon 9 Heavy Expended \$600,000,000 \$62,000,000 \$150,000,000 Falcon 9 Falcon Heavy 271 Flown Since 1981 Development Cost Additional Seament \$396.000.000 \$500,000,000 140,000 kg to LEO 256,000 kg to LEO

Figure 17. SLS and Falcon Infographic (Reddit, 2019)

SpaceX's Disruption of the Traditional Space Industry

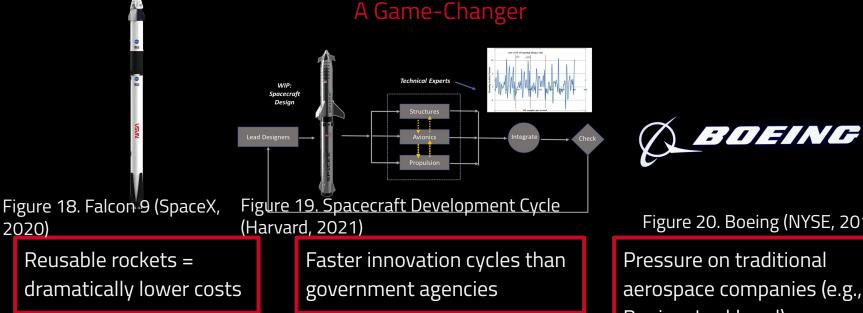


Figure 20. Boeing (NYSE, 2019)

Pressure on traditional aerospace companies (e.g., Boeing, Lockheed)

Public vs. Private Roles in Future Exploration

Who Leads the Next Era?

- 1. Governments: science, long-term missions, safety
- 2. Private companies: innovation, efficiency, tourism
- 3. Collaboration is key (e.g., NASA + SpaceX partnerships)

Figure 21. Jim Bridenstine and Elon Musk (Business Insider, 2019)

Ethical & Financial Implications

Ethics, Equity & Economics

Wealth gap highlighted in space tourism

Environmental concerns from launches

Economic potential: jobs, tech spinoffs

Figure 22. Astronaut in space (Getty Images, 2025)

Industry Trends and Funding Comparisons

Space Industry Snapshot

Global space economy: \$500+ billion in 2023

Private investment growing faster than public

U.S. leads, but global players rising

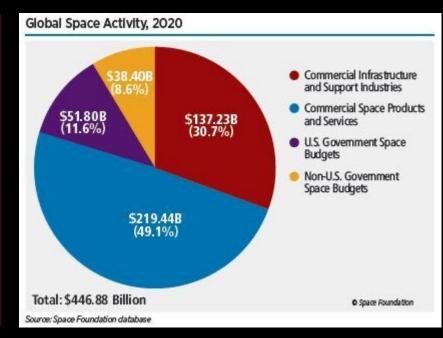


Figure 23. Global Space Activity (Space Foundation Database, 2020)